自编码器对数据降维,最后采用LSTM对数据进行拟合预测

50 篇文章 3 订阅
40 篇文章 2 订阅

采用自编码器对高维特征表达成低维特征,最后采用LSTM对数据进行拟合,预测准确率很高。

import torch
import torch.nn as nn
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
# 超参数
EPOCH = 200
LR = 0.005



data = load_iris()
y = data.target
x = data.data


class AutoEncoder(nn.Module):
    def __init__(self):
        super(AutoEncoder, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(4, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 12),
            nn.ReLU(),
            nn.Linear(12, 2),
        )

        self.decoder = nn.Sequential(
            nn.Linear(2, 12),
            nn.ReLU(),
            nn.Linear(12, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Linear(128, 4),
        )

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return encoded, decoded


autoencoder = AutoEncoder()
optimizer = torch.optim.Adam(autoencoder.parameters(), lr=LR)
loss_func = nn.MSELoss()




for epoch in range(EPOCH):
     b_x = torch.from_numpy(x).unsqueeze(0).float()
     b_y = torch.from_numpy(x).unsqueeze(0).float()
     _, decoded = autoencoder(b_x)
     loss = loss_func(decoded, b_y)
     optimizer.zero_grad()
     loss.backward()
     optimizer.step()

     print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())


encoded_data, _ = autoencoder(torch.from_numpy(x).unsqueeze(0).float())
x = encoded_data.detach().numpy().squeeze(0)
print(encoded_data.detach().numpy().shape)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
print(y_train)

class RNN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.rnn=torch.nn.LSTM(
            input_size=2,
            hidden_size=64,
            num_layers=1,
            batch_first=True
        )
        self.out = torch.nn.Linear(in_features=64, out_features=3)

    def forward(self, x):
        # 一下关于shape的注释只针对单项
        # output: [batch_size, time_step, hidden_size]
        # h_n: [num_layers,batch_size, hidden_size] # 虽然LSTM的batch_first为True,但是h_n/c_n的第一维还是num_layers
        # c_n: 同h_n
        output, (h_n, c_n) = self.rnn(x)
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep = h_n[-1, :, :]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        x = self.out(output_in_last_timestep)
        return x


net = RNN()
# 3. 训练
# 3. 网络的训练(和之前CNN训练的代码基本一样)
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
loss_F = torch.nn.CrossEntropyLoss()
for epoch in range(500):  # 数据集只迭代一次

    x = torch.from_numpy(X_train).unsqueeze(0).float()
    y = torch.from_numpy(y_train).long()
    pred = net(x.view(-1, 1, 2))

    loss = loss_F(pred, y)  # 计算loss
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())


with torch.no_grad():
        test_pred = net(torch.from_numpy(X_test).unsqueeze(0).float().view(-1, 1, 2))
        Y_test = torch.from_numpy(y_test).long()
        prob = torch.nn.functional.softmax(test_pred, dim=1)
        pred_cls = torch.argmax(prob, dim=1)
        acc = (pred_cls == Y_test).sum().numpy() / pred_cls.size()[0]
        print(f"{epoch}: accuracy:{acc}")

 

accuracy:0.9333333333333333

 

  • 4
    点赞
  • 82
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
LSTM(长短期记忆网络)是一种循环神经网络模型,可以用于地下水进行多源数据的时序预测。下面是具体的实施步骤: 1. 数据收集:收集与地下水相关的多源数据,包括地下水位、地下水压力、气象数据等。这些数据可以来自不同的传感器、气象站等各种数据源。 2. 数据预处理:对收集到的数据进行预处理,包括数据清洗、去除异常值、处理缺失值等。同时,对数据进行归一化处理,使得数据都处于相同的数值范围内,有助于模型的训练和预测。 3. 数据准备:将预处理后的数据划分为训练集和测试集。通常情况下,可以将数据按照时间顺序划分,用前一部分作为训练集,后一部分作为测试集。 4. 构建LSTM模型:使用Python编程语言和深度学习库,如TensorFlow或Keras,构建LSTM模型。LSTM模型是一种递归神经网络,它可以学习和记忆时间序列的相关性。 5. 模型训练:使用训练集对LSTM模型进行训练。在训练过程中,通过最小化损失函数来优化模型的参数,使其能够更好地拟合训练集数据。 6. 模型验证:使用测试集评估训练好的LSTM模型的预测性能。通过计算模型在测试集上的预测误差,比如均方根误差(RMSE)或平均绝对误差(MAE),来评估模型的准确度。 7. 预测结果可视化:将地下水的真实值和模型预测进行对比,可以使用可视化工具(如Matplotlib)将结果可视化,以便更直观地评估模型的预测能力。 通过以上步骤,可以利用LSTM模型对地下水进行多源数据时序预测。模型可以学习地下水数据的时序特征,从而对未来的地下水变化进行预测。这对于管理和保护地下水资源具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值