pytorch 搭建的基于LSTM自编码器对数据降维并采用KNN算法对鸢尾花分类

50 篇文章 4 订阅
40 篇文章 2 订阅

LSTM搭建自编码器提取特征,KNN分类

import torch
import torch.nn as nn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 超参数
EPOCH = 200
LR = 0.005



data = load_iris()
y = data.target
x = data.data


#X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
#print(y_train)

class RNN(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.rnn = torch.nn.LSTM(
            input_size=4,
            hidden_size=64,
            num_layers=1,
            batch_first=True
        )
        self.out = torch.nn.Linear(in_features=64, out_features=3)


        self.rnn_2 = torch.nn.LSTM(
            input_size=3,
            hidden_size=64,
            num_layers=1,
            batch_first=True
        )
        self.out_2 = torch.nn.Linear(in_features=64, out_features=4)

    def forward(self, x):
        # 一下关于shape的注释只针对单项
        # output: [batch_size, time_step, hidden_size]
        # h_n: [num_layers,batch_size, hidden_size] # 虽然LSTM的batch_first为True,但是h_n/c_n的第一维还是num_layers
        # c_n: 同h_n
        output, (h_n, c_n) = self.rnn(x)
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep = h_n[-1, :, :]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        encode = self.out(output_in_last_timestep)

        output1, (h_n1, c_n1) = self.rnn_2(encode.view(-1, 1, 3))
        # output_in_last_timestep=output[:,-1,:] # 也是可以的
        output_in_last_timestep1 = h_n1[-1, :, :]
        # print(output_in_last_timestep.equal(output[:,-1,:])) #ture
        decode = self.out_2(output_in_last_timestep1)
        return encode, decode


net = RNN()
# 3. 训练
# 3. 网络的训练(和之前CNN训练的代码基本一样)
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
loss_F = torch.nn.MSELoss()
for epoch in range(500):  # 数据集只迭代一次

    x1 = torch.from_numpy(x).unsqueeze(0).float()
    x2 = torch.from_numpy(x).unsqueeze(0).float()
    _, pred = net(x1.view(-1, 1, 4))

    loss = loss_F(pred, x2)  # 计算loss
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy())


pred, _ = net(x1.view(-1, 1, 4))
print(pred)
print(pred.shape)
pred = pred.squeeze(1).detach().numpy()
print(pred)



from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score

knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, pred, y, cv=6, scoring='accuracy')
print(scores)

 

  • 3
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
以下是一个简单的LSTM自编码器PyTorch实现示例: ```python import torch import torch.nn as nn class LSTMAutoencoder(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers): super(LSTMAutoencoder, self).__init__() self.hidden_dim = hidden_dim self.num_layers = num_layers # Encoder self.encoder = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) # Decoder self.decoder = nn.LSTM(hidden_dim, input_dim, num_layers, batch_first=True) def forward(self, x): # Encoder _, (hidden, cell) = self.encoder(x) # Decoder out, _ = self.decoder(hidden) return out # 创建模型实例 model = LSTMAutoencoder(input_dim=10, hidden_dim=5, num_layers=1) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 50 for epoch in range(num_epochs): # 前向传播 output = model(x_train) # 计算损失 loss = criterion(output, x_train) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 输出损失 if epoch % 10 == 0: print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在此示例中,我们定义了一个LSTM自编码器类,它包含一个LSTM编码器和一个LSTM解码器。在正向传递期间,输入被传递到编码器中,然后编码器的隐藏状态被传递到解码器中。解码器输出的结果被视为重构的输入。我们使用均方误差损失函数来度量重构输出与原始输入之间的误差,并使用Adam优化器来更新模型参数。最后,我们训练模型,输出损失并保存模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值