self-attention(pytorch 实现)

来源: MEF-GAN: Multi-Exposure Image Fusion via Generative Adversarial Networks

 

class Attention(nn.Module):
    def __init__(self, bn=True):
        super(Attention, self).__init__()

        self.conv1 = nn.Conv2d(6, 16, kernel_size=3, stride=2)
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2)


        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU()

        self.bn2 = nn.BatchNorm2d(32)


        self.Cv1 = nn.Conv2d(32, 32, kernel_size=1, stride=1)

        self.cv2 = nn.Conv2d(32, 8, kernel_size=1, stride=1)
        self.cv3 = nn.Conv2d(32, 8, kernel_size=1, stride=1)

    def forward(self, under, over):

        x = torch.cat((under, over), dim=1)
        output = self.relu(self.bn(self.conv1(x)))
        output = self.maxpool(output)
        output = self.relu(self.bn2(self.conv2(output)))

        C = self.Cv1(output)
        C = C.view(C.shape[0] * C.shape[1], C.shape[2] * C.shape[3])

        c1 = self.cv2(output)
        c1 = c1.view(c1.shape[0] * c1.shape[2] * c1.shape[3], 8)

        c2 = self.cv3(output)
        c2 = c2.view(c2.shape[0] * c2.shape[2] * c2.shape[3], 8).t()

        c = torch.nn.Softmax(torch.mm(c1, c2), dim=1)

        c = c.view(output.shape[0], c.shape[0], int(c.shape[1] // output.shape[0]))



        c = c.view(c.shape[0] * c.shape[1], c.shape[2])

        attention_map = torch.mm(C, c.t())


        attention_map = attention_map.view(output.shape[0], output.shape[1], output.shape[2] * output.shape[0], output.shape[3] * output.shape[0] )

        attention_map = F.interpolate(attention_map, size=[under.shape[2], under.shape[3]])

        return attention_map

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: self-attention是一种机器学习中的技术,可以用于自然语言处理等任务中。它可以帮助模型更好地理解输入数据中的关系,从而提高模型的性能。在PyTorch中,可以使用torch.nn.MultiheadAttention模块来实现self-attention。该模块可以接受输入数据和查询数据,并返回一个输出张量,其中包含了输入数据和查询数据之间的关系。使用该模块需要先定义一个MultiheadAttention对象,并将其作为模型的一部分进行训练。 ### 回答2: Self-Attention是神经网络中一种重要的机制,可以帮助模型学习并利用输入序列中不同位置之间的信息依赖关系。在NLP等领域中,Self-Attention机制已被广泛应用于文本生成、机器翻译等任务中。PyTorch是一种广泛使用的深度学习框架,为实现Self-Attention提供了灵活、高效的工具。 在PyTorch实现Self-Attention可以采用自定义层的方式,使用torch.nn.Module实现。一个典型的Self-Attention层包括一个线性变换和一个softmax函数,用于计算每个位置与其他位置的注意力分布。实现时,需要指定输入维度、注意力头数、隐藏维度等超参数。 下面是一个简单的Self-Attention实现示例: ``` import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, input_dim, hidden_dim, num_heads): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.query = nn.Linear(input_dim, hidden_dim * num_heads, bias=False) self.key = nn.Linear(input_dim, hidden_dim * num_heads, bias=False) self.value = nn.Linear(input_dim, hidden_dim * num_heads, bias=False) self.softmax = nn.Softmax(dim=-1) def forward(self, x): # x shape: (batch_size, seq_len, input_dim) batch_size = x.shape[0] seq_len = x.shape[1] query = self.query(x).view(batch_size, seq_len, self.num_heads, self.hidden_dim) key = self.key(x).view(batch_size, seq_len, self.num_heads, self.hidden_dim) value = self.value(x).view(batch_size, seq_len, self.num_heads, self.hidden_dim) energy = torch.sum(query * key, dim=-1, keepdim=True) / self.hidden_dim**0.5 attention = self.softmax(energy) weighted = torch.sum(attention * value, dim=1) return weighted ``` 以上代码实现了一个基本的Self-Attention层,其中输入x的shape为(batch_size, seq_len, input_dim),分别指代batch大小、序列长度、输入维度。query、key和value变换分别使用nn.Linear层实现,并展开为形状为(batch_size, seq_len, num_heads, hidden_dim)的张量。然后计算一个标准化的注意力分布,并将注意力分布与value张量相乘,得到加权的value向量。最后返回的输出维度为(batch_size, num_heads, hidden_dim),是所有注意力头的结果的连接。 总之,通过PyTorch实现Self-Attention机制可以帮助我们更好地利用序列中不同位置之间的信息依赖关系,并在自然语言处理等任务中取得更好的性能。 ### 回答3: Self-attention是一种深度学习模型的重要组成部分,在NLP领域中得到了广泛应用。PyTorch是目前最流行的深度学习框架之一,在PyTorch实现self-attention模型也非常方便。 Self-attention是一种处理序列数据的方法,它可以对输入的序列中的每个元素进行加权处理,从而更好的捕捉输入中的关键信息。在NLP领域中,自注意力可以用来处理自然语言句子或文本中的语义。它可以将输入中的每个单词与其他单词进行比较,并根据它们在上下文中的重要性加权。这些权重可以用于计算加权平均值或注意力向量,这将有助于更好地理解和生成文本。 下面介绍如何使用PyTorch实现self-attention。 首先需要导入所需的库和模块。在PyTorch中,有两种方式定义模型:使用nn.Sequential来定义一系列层或使用nn.Module来定义具有自定义前向和反向传播方法的层。这里选择使用nn.Module来定义self-attention模型。 class SelfAttention(nn.Module): def __init__(self, hidden_size, num_heads, dropout_rate=0.1): super(SelfAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = hidden_size // num_heads # 定义线性变换层 self.query = nn.Linear(hidden_size, hidden_size) self.key = nn.Linear(hidden_size, hidden_size) self.value = nn.Linear(hidden_size, hidden_size) # 定义输出层 self.fc = nn.Linear(hidden_size, hidden_size) # 定义dropout层 self.dropout = nn.Dropout(dropout_rate) def forward(self, x): batch_size, sequence_length, hidden_size = x.size() # 生成q, k, v序列 q = self.query(x).view(batch_size, sequence_length, self.num_heads, self.head_dim).transpose(1, 2) k = self.key(x).view(batch_size, sequence_length, self.num_heads, self.head_dim).transpose(1, 2) v = self.value(x).view(batch_size, sequence_length, self.num_heads, self.head_dim).transpose(1, 2) # 通过Scaled Dot Product Attention计算注意力分值 scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) attn_weights = nn.Softmax(dim=-1)(scores) # 使用dropout进行正则化 attn_weights = self.dropout(attn_weights) # 加权求和 weighted = torch.matmul(attn_weights, v) # 重塑张量 weighted = weighted.transpose(1, 2).contiguous().view(batch_size, sequence_length, -1) # 输出经过全连接层与非线性激活函数 output = self.fc(weighted) return output 在模型初始化中,需要传入hidden_size(输入的向量大小),num_heads(注意力头的数量)和dropout_rate(正则化系数)。在forward方法中,将输入张量x分别经过一个线性变换层,得到q, k, v序列。然后通过Scaled Dot Product Attention(使用矩阵乘法计算注意力分值)计算注意力权重,并使用dropout层对权重进行正则化。最后将权重乘以v后进行加权和计算,经过全连接层并使用非线性激活函数输出结果。 这就是如何使用PyTorch实现self-attention模型的代码示例。有了这个模型就可以在NLP场景中更好地处理序列数据,从而得到更好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值