大偏差理论

大偏差理论

1.引言

先从一个简单的例子看, X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X1,X2,...,XN是长度为 N N N的随机变量序列,其中 X i X_i Xi独立同分布,且 X i ∼ N ( 0 , 1 ) X_i\sim N(0,1) XiN(0,1)。我们令
S N = 1 N ∑ i = 1 N X i S_N=\frac1N\sum\limits_{i=1}^NX_i SN=N1i=1NXi
表示样本均值。由于高斯分布随机变量相加仍然是高斯随机变量,故 S N S_N SN是一个分布为 N ( 0 , 1 N ) N(0,\frac1N) N(0,N1)随机变量,
Pr ⁡ ( ∣ S N ∣ > δ ) → 0 ( N → ∞ ) \Pr(|S_N|>\delta)\rightarrow0 \quad(N\rightarrow \infty) Pr(SN>δ)0(N)
对于任意 δ > 0 \delta>0 δ>0,
Pr ⁡ ( n S N ∈ A ) → ∫ A 1 2 π e − x 2 2 d x ( N → ∞ ) \Pr(\sqrt{n}S_N\in A)\rightarrow\int_{A}\frac1{2\pi}e^{-\frac{x^2}{2}}dx\quad(N\rightarrow \infty) Pr(n SNA)A2π1e2x2dx(N)
对于任意区间 A A A。对于非 N → ∞ N\rightarrow\infty N情况,
Pr ⁡ ( ∣ S N ∣ ≥ δ ) = 1 − ∫ − δ N + δ N 1 2 π e − x 2 2 d x , \Pr(|S_N|\geq\delta)=1-\int_{-\delta\sqrt{N}}^{+\delta\sqrt{N}}\frac1{2\pi}e^{-\frac{x^2}{2}}dx, Pr(SNδ)=1δN +δN 2π1e2x2dx,
所以
1 N log ⁡ Pr ⁡ ( ∣ S N ∣ ≥ δ ) = log ⁡ ( 1 − ∫ − δ N + δ N 1 2 π e − x 2 2 d x ) N 。 \frac1N\log\Pr(|S_N|\geq\delta)=\frac{\log(1-\int_{-\delta\sqrt{N}}^{+\delta\sqrt{N}}\frac1{2\pi}e^{-\frac{x^2}{2}}dx)}{N}。 N1logPr(SNδ)=Nlog(1δN +δN 2π1e2x2dx)
N → ∞ N\rightarrow\infty N时,使用2次洛必达法则求导,可以得到,
lim ⁡ N → ∞ 1 N log ⁡ Pr ⁡ ( ∣ S N ∣ ≥ δ ) = lim ⁡ N → ∞ − δ N 1 2 π e − δ 2 N 2 1 − ∫ − δ N + δ N 1 2 π e − x 2 2 d x = lim ⁡ N → ∞ δ 2 N 3 / 2 1 2 π e − δ 2 N 2 − δ N 1 2 π ( − δ 2 2 ) e − δ 2 N 2 − δ N 1 2 π e − δ 2 N 2 = lim ⁡ N → ∞ δ 2 N 3 / 2 + δ 3 2 N − δ N = − lim ⁡ N → ∞ ( 1 2 N + δ 2 2 ) = − δ 2 2 。 \lim_{N\rightarrow\infty}\frac1N\log\Pr(|S_N|\geq\delta)\\ =\lim_{N\rightarrow\infty}\frac{-\frac{\delta}{\sqrt{N}}\frac{1}{2\pi}e^{-\frac{\delta^2N}{2}}}{1-\int_{-\delta\sqrt{N}}^{+\delta\sqrt{N}}\frac1{2\pi}e^{-\frac{x^2}{2}}dx} \\=\lim_{N\rightarrow\infty}\frac{\frac{\delta}{2N^{3/2}}\frac{1}{2\pi}e^{-\frac{\delta^2N}{2}}-\frac{\delta}{\sqrt{N}}\frac{1}{2\pi}(-\frac{\delta^2}{2})e^{-\frac{\delta^2N}{2}}}{-\frac{\delta}{\sqrt{N}}\frac{1}{2\pi}e^{-\frac{\delta^2N}{2}}} \\=\lim_{N\rightarrow\infty}\frac{\frac{\delta}{2N^{3/2}}+\frac{\delta^3}{2\sqrt{N}}}{-\frac{\delta}{\sqrt{N}}} \\=-\lim_{N\rightarrow\infty}(\frac{1}{2N}+\frac{\delta^2}{2}) \\=-\frac{\delta^2}2。 NlimN1logPr(SN

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值