近世代数一些知识

集合:…, Z整数集,Q有理数集,R实数集,C复数集

映射: 单射、满射、双射

变换: f : A → A f:A\rightarrow A f:AA, 单射变换、满射变换、双射变换、恒等变换

代数运算: f : A × A → A f:A\times A \rightarrow A f:A×AA

运算律: 结合律、分配律(左右/第一第二分配律)、交换律

同态映射: 代数系统 ( A , ∘ ) (A,\circ) (A,) ( A ˉ , ∘ ˉ ) (\bar A,\bar \circ) (Aˉ,ˉ), 如果映射 f : A → A ˉ f:A \rightarrow \bar A f:AAˉ,对于任意 a , b ∈ A a,b\in A a,bA, 都有 f ( a ∘ b ) = f ( a ) ∘ ˉ f ( b ) f(a\circ b)=f(a)\bar\circ f(b) f(ab)=f(a)ˉf(b), 则称该映射为同态映射。
同态隐射的核: kerf = { a ∣ f ( a ) = e A ˉ } \text{kerf}=\{a|f(a)=e_{\bar A}\} kerf={af(a)=eAˉ}

同态: 如果两个代数系统 ( A , ∘ ) (A,\circ) (A,) ( A ˉ , ∘ ˉ ) (\bar A,\bar \circ) (Aˉ,ˉ),存在同态满射 f : A → A ˉ f:A \rightarrow \bar A f:AAˉ,则称 ( A , ∘ ) (A,\circ) (A,) ( A ˉ , ∘ ˉ ) (\bar A,\bar \circ) (Aˉ,ˉ)同态。同态具有传递性、运算律也具有传递性。

同构: 存在同态双射 f : A → A ˉ f:A \rightarrow \bar A f:AAˉ

关系: 等价关系(aRa, aRb=bRa, aRb,bRc–>aRc), 集合分类<–> 等价关系

群(只有一个代数运算)

群: 集合 G ≠ ∅ G\neq\varnothing G=,作用于G上二元运算 + + +,构成的(G,+)代数系统,满足 1.+封闭,2.结合律,3. 存在零元素、任意元素存在逆元素。
群的阶,群元素的阶: 即集合元素的个数|G|,元素的阶为 ∣ g ∣ = min ⁡ { k ∣ k g = g + g + . . . . g = 0 } |g|=\min\{k| kg=g+g+....g=0\} g=min{kkg=g+g+....g=0}.
有限群 ∣ G ∣ < ∞ , ∣ g ∣ = n |G|<\infty,|g|=n G<g=n时, 若 m g = e mg=e mg=e, 则m被n整除,即m=kn;|kg|= n/(k,n), 即kg的阶为n除以 k与n的最大公约数。
max ⁡ g ∣ g ∣ = m \max_{g}|g|=m maxgg=m,则任意g’, ∣ g ′ ∣ |g'| g是m的因子。

按照群元素阶分类: 周期群、无扭群、混合群

半群: 集合 G ≠ ∅ G\neq\varnothing G=,作用于G上二元运算 + + +,构成的(G,+)代数系统,满足1.+封闭,2.结合律。 (例如,自然数加法半群。之所以叫半群是因为扔掉了一半的逆元素。) 含幺半群。

交换群/阿贝尔群:(G,+)是一个群,且满足+运算交换律。

循环群:(G,+)是一个群,存在一个生成元 a a a,对于任意 g ∈ G g\in G gG, 有 g = a r g=a^{r} g=ar

不变子群(正规子群): 左右陪集相等
商群: 正规子群的陪集,作为群元素构成的群
单群: 只有平凡子群作为正规子群

  • ( G , + ) (G,+) (G,+) ( G ˉ , + ˉ ) (\bar G,\bar +) (Gˉ,+ˉ) 同态,如果前者是群,后者也是群
  • 同态映射的核 N = kerf N=\text{kerf} N=kerf G G G的正规子群,且该商群 G / N G/N G/N G ˉ \bar G Gˉ同构,即 G / N = ~ G = im f G/N\tilde{=}G=\text{im} f G/N=~G=imf; 若满同态,则 G / N = ~ G = im f = G ˉ G/N\tilde{=}G=\text{im} f=\bar G G/N=~G=imf=Gˉ
  • 满同态映射下,子群仍是子群,正规子群仍是正规子群;反推逆像也成立
  • 群的直积(笛卡尔积)仍是群
  • k , t k,t k,t互素,循环群 C k , C t C_k,C_t Ck,Ct也为循环群,且同构kt节循环群 C k × C t = ~ C k t C_k\times C_t\tilde{=}C_{kt} Ck×Ct=~Ckt;(注意5与5不互素)
  • 素因数分解 n = p 1 n 1 p 2 n 2 . . . n=p_1^{n_1}p_2^{n_2}... n=p1n1p2n2..., 则 C n = ~ C p 1 n 1 × C p 2 n 2 . . . C_n\tilde = C_{p_1^{n_1}}\times C_{p_2^{n_2}}... Cn=~Cp1n1×Cp2n2...
  • C 4 C_4 C4 C 2 × C 2 C_2\times C_2 C2×C2不同构

环(两个代数运算+*, *运算有一定缺陷为半群)

环: 集合 R ≠ ∅ R\neq\varnothing R=,作用于G上的二元运算+、 ∗ * ,构成的 ( R , + , ∗ ) (R,+,*) (R,+,)代数系统,满足1. (R,+)是交换群,2.(R,*)是半群,3. ∗ * 关于+满足左右分配律。
基本性质: 0 ∗ a = a ∗ 0 = 0 0*a=a*0=0 0a=a0=0, ( − a ) ∗ b = a ∗ ( − b ) = − ( a ∗ b ) (-a)*b=a*(-b)=-(a*b) (a)b=a(b)=(ab)

交换环: ( R , + , ∗ ) (R,+,*) (R,+,)环, 运算*满足交换律。
整环: ( R , + , ∗ ) (R,+,*) (R,+,)交换环,有单位元,无零因子。
除环: ( R , + , ∗ ) (R,+,*) (R,+,)环, R ∗ = R R^*=R R=R\0, ( R ∗ , ∗ ) (R^*,*) (R,)是群。

  • 除环必定没有零因子,因为 a ≠ 0 , a b = 0 ⇒ a − 1 a b = b = 0 a\neq 0, ab=0\Rightarrow a^{-1}ab=b=0 a=0,ab=0a1ab=b=0
  • 无零因子等价于,所有非零元素的加法阶都等于某个素数

理想(理想子环): 1. 任意 a , b ∈ I , r ∈ R a,b\in I, r\in R a,bI,rR, 则 a − b , a r , r a ∈ I a-b, ar, ra\in I ab,ar,raI
理想的性质: 理想的交与和都是理想,理想的和是包含理想并的最小理想
商环(剩余类环): 理想的陪集构成的元素; 只看加法的话,是商群;商环的运算法则为: [ a ] + [ b ] = [ a + b ] , [ a ] ∗ [ b ] = [ a ∗ b ] [a]+[b]=[a+b], [a]*[b]=[a*b] [a]+[b]=[a+b],[a][b]=[ab]
单环: 只有平凡理想;除环、域是单环

  • 满同态映射 f f f,其核 ker f \text{ker} f kerf 是一个理想,并且其商环与 im f \text{im} f imf同构; 若满同态映射,则与另一环同态
  • 子环的满同态隐射仍是子环,理想的满同态隐射也是理想;反推逆像也有同样结论

主理想: a ∈ R a\in R aR, 包含 a a a的所有理想的交,即包含a的最小理想 I a = { a r + n a ∣ n ∈ Z , r ∈ R } I_a=\{ar+na|n\in Z, r\in R\} Ia={ar+nanZ,rR}; 特别地,对于有单位元的交换环 I a = { a r ∣ r ∈ R } I_a=\{ar|r\in R\} Ia={arrR};包含a,b,c…的最小理想为 I a + I b + I c . . . I_a+I_b+I_c... Ia+Ib+Ic...
素理想: 交换环 R R R I ≠ R I\neq R I=R是一个真理想,且 a , b ∈ R a,b\in R a,bR, a b ∈ I ab\in I abI 可推出 a ∈ I a\in I aI b ∈ I b\in I bI

  • 对于交换环R而言, I I I是素理想等价于, R / I R/I R/I是整环
  • 素数 p p p生成的主理想 { p r ∣ r ∈ Z } \{pr|r\in Z\} {prrZ}是Z的素理想

极大理想: 除R外,没有包含I的更大理想

  • 素数 p p p生成的主理想 { p r ∣ r ∈ Z } \{pr|r\in Z\} {prrZ}是Z的极大理想
  • 对于含单位元 e e e的交换环而言,I是R的极大理想,等价于, R / I R/I R/I是域
  • 素数 p p p生成的主理想 I p = { p r ∣ r ∈ Z } I_p=\{pr|r\in Z\} Ip={prrZ}, Z / I p Z/I_p Z/Ip是域
  • 对于有 e e e的交换环而言,极大理想一定是素理想

域(两个代数运算,弥补了*运算缺陷的环)

域: D1). ( F , + , ∗ ) (F,+,*) (F,+,)交换环,关于运算*,存在不同于零元的单位元,任意非零元素存在逆元素。D2). 交换除环;D3). ( F , + ) 为 交 换 群 , ( F / 0 , ∗ ) (F,+)为交换群,(F/0,*) (F,+),(F/0,)都为交换群,满足分配率。

注: 从环过渡到域,是把 ( R , ∗ ) (R,*) (R,)由半群变为 ( R ∗ , ∗ ) (R^*,*) (R,)交换群,并且其单位元不等于零元 I ≠ 0 I\neq0 I=0

有限域/伽罗华域: ( F , + , ∗ ) (F,+,*) (F,+,)域, ∣ F ∣ < ∞ |F|<\infty F<

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值