面经

###1.OPPO
职位:AI算法工程师
总体感受:面试官人很nice,OPPO这个部门目前主要做推荐系统和广告推荐的业务,自己这方面啥也不懂,面试官还很耐心的解释,需求不大,OPPO前年在成立的部门,主要关注点不在深度学习,而是机器学习,特别是特征构建和提取。
具体问题:
1.项目说一说
2.手写一个代码:一个数组中如果有两个相同的数且像个相同的数的距离小于k,则输出Yes
3.手写一个背包
4.做一堆选择题:单选:统计概率问题,数学排列组合问题,机器学习基础,C代码【指针】 多选:机器学习调参正则化等
5.手推LR,包括极大似然损失函数的推导等
6.机器学习场景题:欺诈短信检测 收集什么数据,怎么清洗,怎么提取特征构建特征,用什么模型,怎么评估,样本不均衡怎么解决
7.L1正则为什么稀疏
8.聊公司的业务,谈自己的不足

经验总结:
1.实践能力不强,多做比赛
2.想明白具体做的方向:NLP,广告推荐【互联网做的多】 计算机视觉【面试官说做的少】
3.基础手推的代码 重点放在LR,GBDT

2面:
新闻,讲自己的见解
最自豪的项目
有没有做过leader,讲一下最有成就的一件事
最艰难的事
未来三年的工作计划
你觉得你的朋友会怎么评价你
你觉得最有成就感的是什么事?
当你遇到看不惯的事情时你会怎么办?
有没有做过什么疯狂的事?
没有外界压力你是怎么做到坚持学习技术的?

###2.美团
技术一面:
1.手撕一个字符串分割
2.手撕一个map reduce数据统计
剩下都是项目相关的问题了
3.过拟合与正则化
4.决策树分割,RF,GBDT优缺点
5.GBDT推导,如何求梯度
6.LR与SVM的对比
7.LR如何分布式
8.深度学习领域的RNN与LSTM
9.各种激活函数的区别与优缺点
10.项目中用到的深度学习模型的空间和时间复杂度

技术二面:
1.手撕一个二叉树中每个路径上的数字和
2.手撕一个最长回文子序列
项目相关
3.讲一个最复杂的项目
4.推荐系统相关的知识,DeepFM与wide&deep模型的区别等,面试官建议去读原论文

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值