Scipy空间--计算凸包(convexHull)

本文介绍了在Scipy的spatial模块中如何使用convexHull函数来计算一组点的凸包。凸包是包含这些点的最小凸集合,可以理解为包围散点的最小凸边形。该函数接受点的坐标作为输入,返回值的vertices属性包含了按逆时针顺序排列的凸包顶点索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凸包:数学上指,在实向量空间V中的一组点X的凸包或凸包络是包含X的最小凸集。通俗的来说就是包围一组散点的最小凸边形

在scipy.spatial 中计算凸包的函数,scipy中convexHull输入的参数可以是m2的点坐标。其返回值的属性.verticess是所有凸轮廓点在散点(m2)中的索引值。

注意:属性.verticess绘制出来的轮廓点是按照逆时针排序

Scipy 计算得到的凸包见下图:
在这里插入图片描述
代码示例:

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial import ConvexHull
##########scipy 凸包################
points = np.random.rand(30, 2)
hull = ConvexHull(points)
plt.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值