网站用户行为分析:方法、工具与实践

摘要:随着互联网发展,网站竞争激烈,用户行为分析对网站建设与运营至关重要。本文综合介绍了基于服务器日志和客户端收集用户行为数据的方法,包括各自优缺点及相关工具;阐述了网站用户分析的五大常规方法;以搜索引擎为例说明基于日志的用户行为分析思路;从网站访问行为分析的维度探讨其价值;回顾网站用户行为分析的阶段;并以基于Google Analytics的应用为例讲解监控用户点击行为的方法。

一、引言

在当今互联网时代,网站数量不断增长,竞争愈发激烈。用户在网站上的行为数据成为改善网站可用性、提升用户体验的关键依据。准确收集和分析用户行为数据,有助于网站运营者了解用户需求、优化网站设计、制定营销策略,进而提高网站的竞争力和用户满意度。

二、用户行为数据收集和分析方法

(一)基于服务器日志的方法

  1. 优点
    • 自动生成,成本低,由web服务器自动生成日志文件,无需额外大量投入。
    • 数据反映真实情况,相比人为建造的可用性实验室环境,更能体现真实用户行为。
    • 数据量大且时间跨度长,有利于利用数据挖掘技术分析用户行为。
    • 开发数据分析工具相对容易且花费不大。
  2. 缺点
    • 无法准确识别访问用户,日志文件通常记录IP地址,多为动态IP且受代理服务器影响,难以确定具体用户。
    • 记录用户访问路径不准确,当浏览器使用缓存、通过图片链接或直接键入URL地址等情况时,可能无法准确记录用户浏览路径。
    • 难以精确计算用户每页停留时间,日志文件记录数据传输开始时间而非结束时间,且不清楚用户何时开始浏览页面。
    • 不能确定用户离开站点的准确位置,记录的最后一页可能不是用户实际看到的最后一页。
    • 难以判断用户是否成功完成任务,对于用户是否找到所需信息等问题难以仅通过日志文件回答。
  3. 辅助工具
    • Click T races A nalyzer是一套分析网站用户行为的工具,能将复杂数据简单表达,方便可用性人员分析用户行为。

(二)客户端收集和分析方法

  1. 优点
    • 数据更真实,用户在真实环境下操作,减少人为干扰。
    • 数据更精确,可克服基于日志文件方法的诸多问题,如不受动态IP和代理服务器影响,能准确记录用户浏览路径和页面停留时间等。
  2. 收集技术
    • 例如web服务器可对访问站点的客户机自动分配ID并记录在客户端的Cook ies中,通过访问Cook ies跟踪用户访问情况。

三、网站用户分析的常规方法

(一)用户轨迹分析法

通过分析用户从网站某页面“着陆”后的一系列行为轨迹,了解用户核心需求,为网站调整提供依据,如根据用户行为数据优化页面设计,提高用户关注度。

(二)用户基本动作分析法

将用户行为分解为点击、上传、下载、播放、注册、购买、留言、投票等基本动作,归类为浏览类、互动类等,进行数量统计分析,得出各类行为数据总量和总体数据,为进一步数据分析奠定基础。

(三)关联分析法

关联分析用户的上网习惯、基本属性、社会属性与网站行为之间的关系,如电子商务网站分析用户收入水平与购物频率、购买金额的关联度等,为网站营销推广提供重要意义的数据。

(四)目标向量分析法

针对网站日志中的流量来源、跳出率、平均页面停留时间、平均访问页数等向量值,分析网站用户黏度和忠诚度,评估网站性能,为优化网站提供参考。

(五)TOP分析法

研究最活跃用户的特征,包括基本属性、上网习惯、网站用户行为等,得出活跃用户群体特征,为网站推广提供数据支持,满足该类用户需求以提升网站活力。

四、基于日志的用户行为分析示例(以搜索引擎为例)

(一)日志记录分析

  1. 记录用户从开始搜索到找到网页的时间,如搜索“用户 日志”相关内容,总计用时42秒,可衡量搜索引擎设计的优劣,目标是缩短该时间。
  2. 观察智能纠错功能的作用,如用户输入“拥护 日志”后点击智能纠错“用户 日志”,说明该功能对改进搜索有帮助。
  3. 分析结果页点击情况,“用户 日志”第二条结果3秒跳出,内容可能较差需重新排序;第一条结果用户浏览22秒但非最终需求,用户修改关键词重新搜索后第一条结果满足需求。

(二)对设计的启示

  1. 按钮设计需考量大小、位置、形状、颜色、质感和阴影等因素,以利用户点击。
  2. 统计用户使用回车键和点击按钮搜索的比例,优化搜索方式。
  3. 提供搜索建议,减少用户输入,提高搜索效率。
  4. 关注服务器搜索时间、网页加载速度、查全率和排序等技术指标,影响用户体验。
  5. 考虑即时搜索功能,省去跳转时间。
  6. 分析用户组织关键词的习惯,如词组、限定词和句式等,优化搜索结果页。
  7. 通过A/B和多变量测试确定最佳结果和广告展示形式,如链接的颜色、长度、字体和字号等。

五、网站访问行为分析

(一)分析维度及价值

  1. 鼠标点击
    • 反映用户在网页上的视觉轨迹,可据此评估网页设计合理性,影响网站信息架构和结构。例如,用户先点击的元素可体现其视觉关注点,若企业希望用户点击特定位置而实际未达到,可能需要改进网页设计。
  2. 浏览器和操作系统信息
    • 提供用户使用机器的基本信息,虽无太多新意,但也是了解用户的一个方面。
  3. 访问轨迹和停留时间
    • 从大层面可了解用户在网站的客观行为,从小层面可发现网站操作流程问题,结合停留时间还可判断用户类型。如在购买商品付款流程中,若用户总是在结算页面跳出,通过分析鼠标点击可确定是误操作还是其他原因,从而改进结算页面设计;通过对用户访问不同频道及停留时间的分析,可大致判断用户类型,为制定策略提供依据。

(二)现有网站流量统计产品的不足

目前大部分企业使用的网站流量统计产品多局限于关心在线人数、访问者来源等有限信息,缺乏对用户行为的深入分析维度,如对用户归类分析等,导致数据堆砌而无法有效获知用户行为,企业难以据此制定精准策略。

六、网站用户行为分析的阶段

(一)初期(新奇与兴奋阶段)

网站分析人员最初接触HBX、Coremetrics、Omniture SiteCatalyst、Google Analytics等工具时,会做大量报告,提供网站整体流量、页面表现、流量来源、各渠道流量质量、站内搜索行为、站外引擎情况等数据,主要扮演reporter角色,但此过程有助于深入了解分析系统和指标定义。

(二)中期(谨慎与探索阶段)

随着工作深入,发现数据源增多且数据不一致,面临他人挑战,于是研究数据追踪原理,深入理解指标真实定义,如市场投放attribution window等复杂概念,这有助于了解数据产生原理。

(三)后期(综合分析与验证阶段)

需要分析数据变化原因,综合考虑各渠道流量数据和用户行为,同时关注外部市场变化对流量、转化率等指标的影响。但分析过程复杂,原因众多,且需耗费大量精力验证结果准确性。

(四)近期(聚焦用户行为分析阶段)

网站用户行为分析最为困难,与市场投放不同,用户行为受网站设计和用户需求等多种因素影响,难以判断。例如购物流程中功能改进可能使数据变化但不一定符合用户需求;市场投放变化导致用户群变化影响分析结果;且不能仅从数据角度看页面改进,而应从系统角度分析用户行为路径变化与业务目标的一致性。网站分析最终瓶颈在于与业务结合,分析人员需提供决策insights而非单纯data。

七、监控网站用户点击行为(基于Google Analytics的应用)

(一)明确监控必要性

网站中部分按钮点击对分析至关重要,如电子商务网站的“放入购物车”、“购买”、“支付”等,微博网站的“关注”、“发布微博”等,视频网站的“播放”、“暂停”等。对于一些不产生新页面浏览行为(如Ajax架构点击、Flash中点击、出站按钮或链接点击)且重要的点击,需要监控和统计。以博客为例,右侧侧边栏订阅或关注按钮的点击对博主有价值,需了解点击情况。

(二)Google Analytics的点击监控统计

  1. 事件追踪
    • 专门为特定用户行为定制,可设置类别、行为、标签和价值,方便分类汇总数据。如在博客RSS订阅、邮件订阅和关注按钮设置中,可通过不同标签和类别区分,清晰查看汇总和细分数据。
  2. 虚拟页面
    • 可将重要点击设置为网站目标,但会导致Pageviews增加。通过在点击代码中设置,如RSS订阅、邮件订阅和不同平台关注按钮的点击代码设置,可将点击转化为虚拟页面浏览,在Google Analytics的Content模块中查看统计数据,可按层次展开查看汇总和细分数据。

(三)将点击设置为网站目标

  1. 在Google Analytics中,将虚拟页面点击行为的目标类型选择为URL目标,使用正则表达式匹配以/virtual/feed或follow/开头的URL,设置目标价值(如博客中此类点击价值较高设为10),完成后可查看目标转化率和价值。
  2. 由于虚拟页面统计导致Pageviews虚高,需添加过滤器。新建配置文件,使用预定义过滤器中的排除子目录功能,过滤掉以/virtual/开头的子目录流量,以获取“干净”的网站Pageviews统计。注意设置目标后,需在原配置文件报表中查看目标相关数据。

八、结论

网站用户行为分析涵盖多种方法和多个阶段,从数据收集到深入分析,再到与业务结合,每个环节都对网站的优化和发展具有重要意义。通过合理运用各种分析方法和工具,网站运营者能够更好地理解用户需求,提升网站性能和用户体验,从而在激烈的互联网竞争中取得优势。未来,随着技术的不断发展,用户行为分析将更加精准和深入,为网站建设和运营提供更有力的支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

燕鹏01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值