提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
本人从最初的OpenCV1.0到现在的OpenCV4.10的学习与实战应用,走过了10多年的路,经历了OpenCV的多次较大更新迭代,也见证了机器视觉日新月异的发展,国产机器视觉算法和软件也快速崛起,离不开优秀的OpenCV开源库,OpenCV几乎可以解决绝大部分视觉开发领域的问题,并且已经有很多公司将其应用到工业制造领域,由于是开源算法库,还在不断发展,后续必将取代绝大部分商业库,性能不亚于商业库,将是未来的主流视觉开发库。因此对从事视觉开发和应用领域的学习者或从业者,OpenCV将是必不可少的工具之一。掌握与精通此门技术,找份视觉开发相关的工作也将不是问题。个人建议:要通过实战从OpenCV的C++版本入门到精通,可以按照以下由浅入深的示例步骤进行,欣赏OpenCV之美,从浅入深,多动手实操与调试运行代码,一定会成为视觉开发高手:
一、入门实战
环境搭建
在开始实战前,需要在你的开发环境中配置OpenCV。这包括下载OpenCV库,将其解压到合适的目录,然后在你的C++开发环境(如Visual Studio、python等)中配置包含目录和库目录,并链接相应的库文件。
简单图像操作
- 读取、显示和保存图像:编写代码读取一张本地图像,显示该图像,并将其保存为另一个文件。例如:
#include <opencv2/opencv.hpp>
#include <iostream>
int main() {
// 读取图像
cv::Mat image = cv::imread("path_to_your_image.jpg");
if (image.empty()) {
std::cout << "无法读取图像" << std::endl;
return -1;
}
// 显