1.条件概率
事件A已经发生的条件下,事件B发生
2.乘法定理
推广多个事件的积事件
更一般地有
3.全概率公式
概念:
试验E的样本空间S,事件
Bi
B
i
,
i=1,2...,n
i
=
1
,
2...
,
n
是样本空间的一个划分,每次试验有且仅有一个发生。
- BiBj=∅,i≠j B i B j = ∅ , i ≠ j
- B1∪B2∪...∪Bn=S B 1 ∪ B 2 ∪ . . . ∪ B n = S
如果A是E的事件,事件A发生,
全概率公式的理解
例子:
人患肺癌的概率为0.1%,人群中有20%吸烟者,他们患肺癌的概率为0.4%, 那个不吸烟的人患肺癌的概率是多少?
换个人能看懂的说法,
P(患肺癌)=0.001
P
(
患
肺
癌
)
=
0.001
,
P(吸烟)=0.2
P
(
吸
烟
)
=
0.2
,
P(患肺癌|吸烟)=0.004
P
(
患
肺
癌
|
吸
烟
)
=
0.004
, 求
P(患肺癌|不吸烟)=?
P
(
患
肺
癌
|
不
吸
烟
)
=
?
P(患肺癌)=0.001
P
(
患
肺
癌
)
=
0.001
既包括了吸烟患肺癌的概率又包括不吸烟患肺癌的概率。
所以不吸烟的人患肺癌的概率为0.00025.
4.贝叶斯公式
n=2时,
用条件概率、全概率公式理解贝叶斯公式:
P(A)发生的概率就用到了全概率公式,包括B在各种情况下A发生的概率:
实际应用中的定义

经典例子:
癌症诊断事件,人患癌症的统计概率为0.005,一个不患癌症的受诊者试验呈阳性的概率为0.05,一个患癌症的病人做诊断时呈阳性的概率为0.95,那么受诊者试验呈阳性,他患癌症的概率?
分析:
P(患癌症)=0.005
P
(
患
癌
症
)
=
0.005
P(呈阳性|不患癌症)=0.05
P
(
呈
阳
性
|
不
患
癌
症
)
=
0.05
P(呈阳性|患癌症)=0.95
P
(
呈
阳
性
|
患
癌
症
)
=
0.95
P(患癌症|呈阳性)=?
P
(
患
癌
症
|
呈
阳
性
)
=
?
使用条件概率计算: