概率论常用公式

第一章

加法公式

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A) + P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

等可能概型(古典概型)

P ( A ) = k n = A 中 包 含 的 事 件 数 S 中 基 本 事 件 的 总 数 P(A)=\frac kn=\frac{A中包含的事件数}{S中基本事件的总数} P(A)=nk=SA

超几何分布

P = C D k C N D n − k C N n P = \frac{C_D^kC_{N_D}^{n-k}}{C_N^n} P=CNnCDkCNDnk

事件A发生条件下事件B发生的概率

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac {P(AB)}{P(A)} P(BA)=P(A)P(AB)

B 1 , B 2 … B_1,B_2\dots B1,B2互不相容,有

P ( ⋃ i = 1 ∞ B i ∣ A ) = ∑ i = 1 ∞ P ( B i ∣ A ) P(\bigcup\limits_{i = 1}^\infty {{B_i}|A} ) = \sum\limits_{i = 1}^\infty {P({B_i}|A)} P(i=1BiA)=i=1P(BiA)

P ( B 1 ∪ B 2 ∣ A ) = P ( B 1 ∣ A ) P ( A ) + P ( B 2 ∣ A ) P ( A ) − P ( B 1 B 2 ) ∣ P ( A ) P(B_1\cup B_2|A)=P(B_1|A)P(A)+P(B_2|A)P(A)-P(B_1B_2)|P(A) P(B1B2A)=P(B1A)P(A)+P(B2A)P(A)P(B1B2)P(A)

乘法原理

P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)

B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn为样本空间 S S S的一个划分,则有

全概率公式

P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+\cdots +P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)

贝叶斯公式

P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P({B_i}|A) = \frac{{P(A|{B_i})P({B_i})}}{{\sum\limits_{j = 1}^n {P(A|{B_j})P({B_j})} }} P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)

特别的,当 n = 2 n=2 n=2时,

P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B)+P(A|\overline B)P(\overline B) P(A)=P(AB)P(B)+P(AB)P(B)

P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P({B}|A) =\frac {P(AB)}{P(A)}= \frac{{P(A|{B})P({B})}}{P(A|B)P(B)+P(A|\overline B)P(\overline B)} P(BA)=P(A)P(AB)=P(AB)P(B)+P(AB)P(B)P(AB)P(B)

A 、 B A、B AB相互独立时,有

P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ) P ( B ) P(AB)=P(B|A)P(A)=P(A)P(B) P(AB)=P(BA)P(A)=P(A)P(B)

n n n个不同的元素中无放回抽取 m m m个元素排成有序的一列时,得到

A n m = n ! ( n − m ) ! A_n^m=\frac {n!}{(n-m)!} Anm=(nm)!n!

个不同的排列

n n n个不同的元素中无放回抽取 m m m个元素不论次序组成一组时,得到

C n m = n ! m ! ( n − m ) ! C_n^m=\frac {n!}{m!(n-m)!} Cnm=m!(nm)!n!

个不同的组合

A ⊂ B A\subset B AB(注意是大减小),则
P ( B − A ) = P ( B ) − P ( A ) P(B-A)=P(B)-P(A) P(BA)=P(B)P(A)

独立相容可能同时发生

13/11/2021 09:56

第二章

离散型随机变量:全部可能的取值为有限个或可列无限个

二项分布(n重伯努利实验): X ∼ b ( n , p ) X\sim b(n, p) Xb(n,p)

P { X = k } = C n k p k q n − k , k = 0 , 1 , 2 , ⋯   , n P\{X=k\}=C^k_np^kq^{n-k},k=0, 1,2,\cdots,n P{X=k}=Cnkpkqnk,k=0,1,2,,n

其中 q = 1 − p q=1-p q=1p

n = 2 n=2 n=2时,二项分布变为0-1分布:

P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 P\{X=k\}=p^k(1-p)^{1-k},k=0, 1 P{X=k}=pk(1p)1k,k=0,1

泊松分布: X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ)
P { X = k } = λ k e − λ k ! P\{ X = k\} = \frac{{{\lambda ^k}{e^{ - \lambda }}}}{{k!}} P{X=k}=k!λkeλ

当n充分大,p充分小时,可由泊松分布来估计二项分布,也就是有

C n k p k ( 1 − p ) n − k ≈ λ k e − λ k ! C_n^k{p^k}{(1 - p)^{n - k}} \approx \frac{{{\lambda ^k}{e^{ - \lambda }}}}{{k!}} Cnkpk(1p)nkk!λkeλ

其中 λ = n p \lambda =np λ=np

分布函数

F ( x ) = P { X ≤ x } , − ∞ < x < + ∞ F(x)=P\{X\leq x\},-\infty <x<+\infty F(x)=P{Xx},<x<+

对任意实数 x 1 < x 2 x_1<x_2 x1<x2,有

P { x 1 < X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P\{x_1<X\leq x_2\}=P\{X\leq x_2\}-P\{X\leq x_1\}=F(x_2)-F(x_1) P{x1<Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1)

此性质可用来证明分布函数是不减函数

连续性随机变量:分布函数 F ( x ) F(x) F(x)满足

F ( x ) = ∫ − ∞ x f ( t ) d t F(x) = \int_{ - \infty }^x {f(t)dt} F(x)=xf(t)dt

f ( x ) f(x) f(x) X X X的概率密度函数,简称概率密度

有:

P { x 1 < X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( x ) d x P\{x_1<X\leq x_2\}=F(x_2)-F(x_1)=\int _{x_1}^{x_2}f(x)dx P{x1<Xx2}=F(x2)F(x1)=x1x2f(x)dx

F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

对于连续型随机变量,其单个点的概率为0,即有

P { X = a } = 0 P\{X=a\}=0 P{X=a}=0

均匀分布 X ∼ U ( a , b ) X\sim U(a, b) XU(a,b):

f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\left\{ \begin{array}{lr} \frac 1{b-a}, & a<x<b \\ 0, & 其他\\ \end{array} \right. f(x)={ba1,0,a<x<b

F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b F(x)=\left\{ \begin{array}{lr} 0,&x<a\\ \frac {x-a}{b-a}, & a\leq x<b \\ 1, & x\geq b\\ \end{array} \right. F(x)=0,baxa,1,x<aax<bxb

指数分布:

f ( x ) = { 1 θ e − x θ , x > 0 0 , 其 他 f(x)=\left\{ \begin{array}{lr} \frac 1\theta e^{-\frac x\theta}, & x>0 \\ 0, & 其他\\ \end{array} \right. f(x)={θ1eθx,0,x>0

F ( x ) = { 1 − e − x θ , x > 0 0 , 其 他 F(x)=\left\{ \begin{array}{lr} 1-e^{-\frac x\theta}, & x>0 \\ 0, & 其他\\ \end{array} \right. F(x)={1eθx,0,x>0

指数分布具有无记忆性,即有:

P { X > s + t ∣ X > s } = P { x > t } P\{X>s+t|X>s\}=P\{x>t\} P{X>s+tX>s}=P{x>t}

正态分布: X ∼ N ( μ , σ 2 ) X\sim N(\mu , \sigma^2) XN(μ,σ2)

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < + ∞ f(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(x - \mu )}^2}}}{{2{\sigma ^2}}}}}, - \infty < x < + \infty f(x)=2π σ1e2σ2(xμ)2,<x<+

F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t F(x) = \frac{1}{{\sqrt {2\pi } \sigma }}\int_{ - \infty }^x {{e^{ - \frac{{{{(t - \mu )}^2}}}{{2{\sigma ^2}}}}}} dt F(x)=2π σ1xe2σ2(tμ)2dt

特别的,当 μ = 0 , σ = 1 \mu =0,\sigma = 1 μ=0,σ=1的时候称随机变量 X X X服从标准正态分布,其概率密度和分布函数分别用 φ ( x ) , Φ ( x ) \varphi(x),\varPhi(x) φ(x),Φ(x)表示,有

φ ( x ) = 1 2 π σ e − x 2 2 , − ∞ < x < + ∞ \varphi(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{x^2}2}}, - \infty < x < + \infty φ(x)=2π σ1e2x2,<x<+

Φ ( x ) = 1 2 π σ ∫ − ∞ x e − t 2 2 d t \varPhi(x) = \frac{1}{{\sqrt {2\pi } \sigma }}\int_{ - \infty }^x {{e^{ - \frac{t^2}2}}} dt Φ(x)=2π σ1xe2t2dt

显然,有

Φ ( − x ) = 1 − Φ ( x ) \varPhi(-x)=1-\varPhi(x) Φ(x)=1Φ(x)

若有随机变量 X ∼ N ( μ , σ 2 ) X\sim N(\mu , \sigma^2) XN(μ,σ2),则存在随机变量Z,使得

Z = X − μ σ ∼ N ( 0 , 1 ) Z=\frac {X-\mu}\sigma \sim N(0,1) Z=σXμN(0,1)

求解随机变量的函数的分布时,比较通用的方法是先通过不等式变形由 F X ( x ) F_X(x) FX(x) f X ( x ) f_X(x) fX(x)求解 F Y ( y ) F_Y(y) FY(y),再对 F Y ( y ) F_Y(y) FY(y)求导一次得到 f Y ( y ) f_Y(y) fY(y)

X X X具有概率密度 f X ( x ) , − ∞ < x < + ∞ f_X(x),-\infty<x<+\infty fX(x),<x<+,又设 X X X Y Y Y的变换 Y = g ( X ) Y=g(X) Y=g(X)处处可导,处处单调,则 Y Y Y的概率密度

f Y ( y ) = { f X [ h ( y ) ] ∣ h ′ ( y ) ∣ , α < y < β 0 , 其 他 f_Y(y)=\left\{ \begin{array}{lr} f_X[h(y)]|h'(y)|, & \alpha<y<\beta \\ 0, & 其他\\ \end{array} \right. fY(y)={fX[h(y)]h(y),0,α<y<β

其中 h ( y ) h(y) h(y) g ( x ) g(x) g(x)的反函数

若有随机变量 X ∼ N ( μ , σ 2 ) X\sim N(\mu , \sigma^2) XN(μ,σ2),则其线性函数 Y = a X + b Y=aX+b Y=aX+b也服从正态分布

13/11/2021 16:14

第三章

(对于对称的结论,只给出一条,另一条可类似得出)

联合分布函数:设 ( X , Y ) (X,Y) (X,Y)是二维随机变量,对于任意实数 x x x y y y,二元函数
F ( x , y ) = P { ( X ≤ x ) ∩ ( Y ≤ y ) } = P { X ≤ x , Y ≤ y } F(x,y)=P\{(X\leq x)\cap(Y\leq y) \}=P\{X\leq x, Y\leq y\} F(x,y)=P{(Xx)(Yy)}=P{Xx,Yy}
( X , Y ) (X,Y) (X,Y)的联合分布函数

联合分布可通俗理解为 ( X , Y ) (X,Y) (X,Y)点到左下无限远处所围成的概率。


0 ≤ F ( x , y ) ≤ 1 0\leq F(x, y)\leq1 0F(x,y)1
∀ 固 定 的 y , F ( − ∞ , y ) = 0 \forall 固定的y,F(-\infty,y)=0 y,F(,y)=0
∀ 固 定 的 x , F ( x , − ∞ ) = 0 \forall 固定的x,F(x,-\infty)=0 x,F(x,)=0
F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,)=0,F(+,+)=1

对于 ∀ ( x 1 , y 1 ) , ( x 2 , y 2 ) , x 1 < x 2 , y 1 < y 2 \forall(x_1,y_1),(x_2,y_2),x_1<x_2,y_1<y_2 (x1,y1),(x2,y2),x1<x2,y1<y2,有
F ( x 2 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) − F ( x 1 , y 2 ) ≥ 0 F(x_2,y_2)-F(x_2,y_1)+F(x_1,y_1)-F(x_1,y_2)\geq0 F(x2,y2)F(x2,y1)+F(x1,y1)F(x1,y2)0

14/11/2021 16:02

二维离散型随机变量:二维随机变量 ( X , Y ) (X,Y) (X,Y)全部可能的取值是有限对或可列无限对

二维随机变量的联合分布律: P { X = x i , Y = y i } = p i j , i , j = 1 , 2 , ⋯ P\{X=x_i,Y=y_i\}=p_{ij},i,j=1,2,\cdots P{X=xi,Y=yi}=pij,i,j=1,2,

或者用表格表示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nKddJcCx-1637058108176)(:/c4a60e283b3243a3a2f472358ccdfb14)]

二维连续型随机变量:如果存在非负可积函数,使
F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y) = \int_{ - \infty }^y {\int_{ - \infty }^x {f(u,v)dudv} } F(x,y)=yxf(u,v)dudv
( X , Y ) (X,Y) (X,Y)为二维连续型随机变量, f ( x , y ) f(x,y) f(x,y)为概率密度

有:
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = F ( + ∞ , + ∞ ) = 1 \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {f(x,y)dxdy = F( + \infty , + \infty ) = 1} } ++f(x,y)dxdy=F(+,+)=1

∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{{{\partial ^2}F(x,y)}}{{\partial x\partial y}} = f(x,y) xy2F(x,y)=f(x,y)
x O y xOy xOy平面上的区域 G G G,有

P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{ (X,Y) \in G\} = \iint\limits_G {f(x,y)dxdy} P{(X,Y)G}=Gf(x,y)dxdy

边缘分布函数:分布函数中令一个变量趋于无穷
F X ( x ) = F ( x , ∞ ) F_X(x)=F(x, \infty) FX(x)=F(x,)
F Y ( y ) = F ( ∞ , y ) F_Y(y)=F(\infty, y) FY(y)=F(,y)

离散型随机变量的边缘分布律:
p i ⋅ = ∑ j = 1 ∞ p i j = P { X = x i } {p_{i\cdot}} = \sum\limits_{j = 1}^\infty {{p_{ij}}} = P\{ X = {x_i}\} pi=j=1pij=P{X=xi}

连续型随机变量的边缘分布函数:
F X ( x ) = F ( x , ∞ ) = ∫ − ∞ x [ ∫ − ∞ ∞ f ( x , y ) d y ] d x {F_X}(x) = F(x,\infty ) = \int_{ - \infty }^x {[\int_{ - \infty }^\infty {f(x,y)dy} ]} dx FX(x)=F(x,)=x[f(x,y)dy]dx

连续型随机变量的边缘概率密度:
f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y {f_X}(x) = \int_{ - \infty }^\infty {f(x,y)dy} fX(x)=f(x,y)dy

Y = y i Y=y_i Y=yi(固定的)条件下随机变量 X X X的条件分布律:
P { X = x i ∣ Y = y j } = P { X = x i , Y = y i } P { Y = y i } = p i j p ⋅ j P\{X=x_i|Y=y_j\}=\frac {P\{X=x_i,Y=y_i\}}{P\{Y=y_i\}}=\frac {p_{ij}}{p_{\cdot j}} P{X=xiY=yj}=P{Y=yi}P{X=xi,Y=yi}=pjpij

连续型随机变量的条件概率密度:

f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) f_{X|Y}(x|y)=\frac {f(x, y)}{f_Y(y)} fXY(xy)=fY(y)f(x,y)

连续型随机变量的条件分布函数:

F X ∣ Y ( x ∣ y ) = P { X ⩽ x ∣ Y = y } = ∫ − ∞ x f ( x , y ) f Y ( y ) d y {F_{X|Y}}(x|y) = P\{ X \leqslant x|Y = y\} = \int_{ - \infty }^x {\frac{{f(x,y)}}{{{f_Y}(y)}}dy} FXY(xy)=P{XxY=y}=xfY(y)f(x,y)dy

二维随机变量的均匀分布

f ( x , y ) = { 1 A , ( x , y ) ∈ G 0 , 其 他 f(x,y)=\left\{ \begin{array}{lr} \frac 1A, &( x,y)\in G \\ 0, & 其他\\ \end{array} \right. f(xy)={A1,0,(x,y)G
其中 G G G是平面上的有界区域,面积为 A A A

相互独立的随机变量
F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)

对连续型随机变量,还有
f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

对于两个随机变量:

Z = X + Y Z=X+Y Z=X+Y
f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y f_{X+Y}(z)=\int_{-\infty}^\infty f(z-y,y)dy fX+Y(z)=f(zy,y)dy
X X X Y Y Y相互独立
f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y f_{X+Y}(z)=\int_{-\infty}^\infty f_X(z-y)f_Y(y)dy fX+Y(z)=fX(zy)fY(y)dy

Z = Y X Z=\frac YX Z=XY Z = X Y Z=XY Z=XY
f Y X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f ( x , x z ) d x f_{\frac YX}(z)=\int_{-\infty}^\infty|x|f(x,xz)dx fXY(z)=xf(x,xz)dx
f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , z x ) d x f_{XY}(z)=\int_{-\infty}^{\infty}\frac 1{|x|}f(x,\frac zx)dx fXY(z)=x1f(x,xz)dx

相互独立时

f Y X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f X ( x ) f Y ( x z ) d x f_{\frac YX}(z)=\int_{-\infty}^\infty|x|f_X(x)f_Y(xz)dx fXY(z)=xfX(x)fY(xz)dx
f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f X ( x ) f Y ( z x ) d x f_{XY}(z)=\int_{-\infty}^{\infty}\frac 1{|x|}f_X(x)f_Y(\frac zx)dx fXY(z)=x1fX(x)fY(xz)dx

M = m a x { X , Y } M=max\{X,Y\} M=max{X,Y} N = m i n { X , Y } N=min\{X,Y\} N=min{X,Y}(重要)

(相互独立时)
F m a x ( z ) = F X ( z ) F Y ( z ) F_{max}(z)=F_{X}(z)F_Y(z) Fmax(z)=FX(z)FY(z)
F m i n ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_{min}(z)=1-[1-F_X(z)][1-F_Y(z)] Fmin(z)=1[1FX(z)][1FY(z)]

推广

M = m a x { X 1 , X 2 , ⋯   , X n } M=max\{X_1,X_2,\cdots,X_n\} M=max{X1,X2,,Xn} N = m i n { X 1 , X 2 , ⋯   , X n } N=min\{X_1, X_2, \cdots,X_n\} N=min{X1,X2,,Xn}
F m a x ( z ) = F X 1 ( z ) F X 2 ( z ) ⋯ F X n ( z ) F_{max}(z)=F_{X_1}(z)F_{X_2}(z)\cdots F_{X_n}(z) Fmax(z)=FX1(z)FX2(z)FXn(z)
F m i n ( z ) = 1 − [ 1 − F X 1 ( z ) ] [ 1 − F X 2 ( z ) ] ⋯ [ 1 − F X n ( z ) ] F_{min}(z)=1-[1-F_{X_1}(z)][1-F_{X_2}(z)]\cdots [1-F_{X_n}(z)] Fmin(z)=1[1FX1(z)][1FX2(z)][1FXn(z)]

同分布

F m a x ( z ) = [ F ( z ) ] n F_{max}(z)=[F(z)]^n Fmax(z)=[F(z)]n
F m i n ( z ) = 1 − [ 1 − F ( z ) ] n F_{min}(z)=1-[1-F(z)]^n Fmin(z)=1[1F(z)]n

15/11/2021 21:47

第四章

数学期望:表征变量的平均取值

(离散型)

E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum\limits_{k=1}^\infty x_kp_k E(X)=k=1xkpk

当分布律的级数 ∑ k = 1 ∞ x k p k \sum\limits_{k=1}^\infty x_kp_k k=1xkpk绝对收敛时成立

(连续型)

E ( X ) = ∫ − ∞ ∞ x f ( x ) d x E(X)=\int^\infty_{-\infty}xf(x)dx E(X)=xf(x)dx

当概率密度做成的积分 ∫ − ∞ ∞ x f ( x ) d x \int^\infty_{-\infty}xf(x)dx xf(x)dx绝对收敛时成立

Y = g ( X ) Y=g(X) Y=g(X), g g g是连续函数

(离散型)

E ( Y ) = E [ g ( X ) ] = ∑ k = 1 ∞ g ( x k ) p k E(Y)=E[g(X)]=\sum\limits^\infty_{k=1}g(x_k)p_k E(Y)=E[g(X)]=k=1g(xk)pk

(连续型)

E ( Y ) = E [ g ( X ) ] = ∫ − ∞ ∞ g ( x ) f ( x ) d x E(Y)=E[g(X)]=\int_{-\infty}^\infty g(x)f(x)dx E(Y)=E[g(X)]=g(x)f(x)dx

对随机变量 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y) Z Z Z是一维的,则可套用上面的公式,设 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y),有:

E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x , y ) f ( x , y ) d x d y E(Z)=E[g(X,Y)]=\int_{-\infty}^\infty\int_{-\infty}^\infty g(x,y)f(x,y)dxdy E(Z)=E[g(X,Y)]=g(x,y)f(x,y)dxdy

则对于单个二维随机变量的期望可以看作 Z = X Z=X Z=X,从而有:
E ( X ) = ∫ − ∞ ∞ ∫ − ∞ ∞ x f ( x , y ) d x d y E(X)=\int_{-\infty}^\infty\int_{-\infty}^\infty xf(x,y)dxdy E(X)=xf(x,y)dxdy

对于离散型随机变量,有类似的结论:
E ( Z ) = E [ g ( X , Y ) ] = ∑ j = 1 ∞ ∑ i = 1 ∞ g ( x i , y i ) p i j E(Z)=E[g(X,Y)]=\sum\limits^\infty_{j=1}\sum\limits^\infty_{i=1}g(x_i,y_i)p_{ij} E(Z)=E[g(X,Y)]=j=1i=1g(xi,yi)pij

(相互独立)
E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

方差:表征变量与均值的偏离程度,实质上是均值 E ( X ) E(X) E(X)的函数

D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } D(X)=Var(X)=E\{[X-E(X)]^2\} D(X)=Var(X)=E{[XE(X)]2}

(离散型)

D ( X ) = ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k D(X)=\sum\limits_{k=1}^\infty[x_k-E(X)]^2p_k D(X)=k=1[xkE(X)]2pk

(连续型)

D ( X ) = ∫ − ∞ ∞ [ x − E ( X ) ] 2 f ( x ) d x D(X)=\int^\infty_{-\infty}[x-E(X)]^2f(x)dx D(X)=[xE(X)]2f(x)dx

有:

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2

方差的性质:

  • D ( C ) = 0 D(C)=0 D(C)=0
  • D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X) D ( X + C ) = D ( X ) D(X+C)=D(X) D(X+C)=D(X)
  • D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\} D(X+Y)=D(X)+D(Y)+2E{[XE(X)][YE(Y)]}
    ,特别的,当 X X X Y Y Y相互独立时, D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)
  • D ( X ) = 0 ⇔ P { X = E ( X ) } = 1 D(X)=0\Leftrightarrow P\{X=E(X)\}=1 D(X)=0P{X=E(X)}=1

切比雪夫不等式:设随机变量 X X X E ( X ) = μ E(X)=\mu E(X)=μ D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2,则对 ∀ ε > 0 \forall\varepsilon>0 ε>0
P { ∣ X − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\{|X-\mu|\geq\varepsilon\}\leq\frac{\sigma^2}{\varepsilon^2} P{Xμε}ε2σ2

重点掌握的六种分布背下来

分布分布律/概率密度 E ( X ) E(X) E(X) D ( X ) D(X) D(X)
(0-1)分布 P { X = k } = p k ( 1 − p ) 1 − k P\{X=k\}=p^k(1-p)^{1-k} P{X=k}=pk(1p)1k
k = 0 , 1 k=0,1 k=0,1
p p p p ( 1 − p ) p(1-p) p(1p)
二项分布
X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)
P { X = k } = C n k p k q n − k P\{X=k\}=C^k_np^kq^{n-k} P{X=k}=Cnkpkqnk
k = 0 , 1 , 2 , ⋯   , n k=0, 1,2,\cdots,n k=0,1,2,,n
n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布
X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ)
P { X = k } = λ k e − λ k ! P\{ X = k\} = \frac{{{\lambda ^k}{e^{ - \lambda }}}}{{k!}} P{X=k}=k!λkeλ λ \lambda λ λ \lambda λ
均匀分布
X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)
f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\left\{\begin{array}{lr}\frac 1{b-a}, & a<x<b \\ 0, & 其他\\ \end{array}\right. f(x)={ba1,0,a<x<b a + b 2 \frac{a+b}2 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数分布 f ( x ) = { 1 θ e − x θ , x > 0 0 , 其 他 f(x)=\left\{\begin{array}{lr} \frac 1\theta e^{-\frac x\theta}, & x>0 \\ 0, & 其他\\ \end{array}\right. f(x)={θ1eθx,0,x>0 θ \theta θ θ 2 \theta^2 θ2
正态分布
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{{\sqrt {2\pi } \sigma }}{e^{ - \frac{{{{(x - \mu )}^2}}}{{2{\sigma ^2}}}}} f(x)=2π σ1e2σ2(xμ)2
− ∞ < x < + ∞ - \infty < x < + \infty <x<+
μ \mu μ σ 2 \sigma^2 σ2

协方差:
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}

相关系数:
ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY}=\frac {Cov(X,Y)}{\sqrt {D(X)}\sqrt {D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)

有:
C o v ( X , X ) = D ( X ) Cov(X,X)=D(X) Cov(X,X)=D(X)
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq1 ρXY1
∣ ρ X Y ∣ = 1 ⇔ ∃ a , b ∈ R , P { Y = a + b X } = 1 |\rho_{XY}|=1\Leftrightarrow\exist a,b\in\mathbb{R},P\{Y=a+bX\}=1 ρXY=1a,bR,P{Y=a+bX}=1

ρ X Y = 0 \rho_{XY}=0 ρXY=0时,称 X X X Y Y Y不(线性)相关

不相关和相互独立不一样,相互独立 ⇒ \Rightarrow 不相关,不相关 ⇏ \nRightarrow 相互独立

但是对于二维正态分布,相互独立 ⇔ \Leftrightarrow 不相关

  • 15
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值