堆排序及复杂度分析

堆排序是一种基于完全二叉树的排序算法,包括建立大顶堆、修改堆以及堆排序的过程。通过比较和交换节点值,可以将任意数组转化为大顶堆。堆排序的时间复杂度为O(n*logn)。
摘要由CSDN通过智能技术生成

 

什么是堆?

可以理解为 堆就是一棵完全二叉树。

完全二叉树:假设一棵二叉树的深度是h,若其满足第1~(h-1)层的节点数达到最大个数,第h层的节点都连续出现在最左边,我们称其为完全二叉树。
 

堆又分为 大顶堆和小顶堆。

  • 大顶堆:父节点的值大于其左右叶子节点的值。
  • 小顶堆:父节点的值小于其左右叶子节点的值。

 

如何构建一个堆?

以数组arr = [3, 8, 5, 2, 9, 5],我们可以把数组表示成堆的形式,如下图。

在这里插入图片描述
如果已知下标 i,则 其父节点的下标为 (i-1) // 2,左孩子的下标为 2 * i + 1,右孩子的下标为 2 * i + 2。
 
如何把一个堆,转化为大顶堆呢?

基本思路: 遍历数组arr,比较子节点与其父节点,若子节点大于父节点,交换二者的值。

第一步:访问下标0,arr[0] = 3,其为根节点,没有父节点,不做比较。

第二步:访问下标1,arr[1] = 8,比较8与其父节点3,交换3和8,得到 arr = [8, 3, 5, 2, 9, 5]。如下图。

在这里插入图片描述
第三步:访问下标2,arr[2] = 5,5小于其父节点8,不做交换。

第四步:访问下标3,arr[3] = 2,2小于其父节点3,不做交换。

第五步:访问下标4,arr[4] = 9,9大于其父节点3,交换9和3。注意,此时并没有结束,9和3交换后,9大于8,仍需继续交换8和9。得到 arr = [9, 8, 5, 2, 3, 5],如下图。

在这里插入图片描述

第六步:访问下标5,arr[5] = 5,5等于其父节点5,不做交换。最终得到大顶堆 arr = [9, 8, 5, 2, 3, 5]。

在这里插入图片描述
 

代码实现

def build_heap(arr, i):
    # 当子节点大于父节点时 交换
    while (arr[i] > arr[(i - 1) // 2] and i > 0):
        arr[i], arr[(i - 1) // 2] = arr[(i - 1) // 2], arr[i]
        # 继续向上交换
        i = (i - 1) // 2

if __name__ == '__main__'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值