pytorch实现 Restnet18

残差网络结构参数: 

 pytroch实现代码,Resnet-18:

import torch
import torch.nn as nn


class ResNetBasicBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(ResNetBasicBlock, self).__init__()
        # padding: 表示 四周 补0的个数, 卷积 权重 和 偏置 随机分配
        # 卷积核大小 (3,3),  输入数据 四周 补 0 个数 为 1, 四周 补 一圈 0; 卷积之后, 原数据 长宽不变。
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)  # 在通道上 归一化 ? 理解不够深刻
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)  # BatchNorm2d 有学习参数 a,b
        # 两层 卷积层 都保持 输入大小不变
        self.stride = stride


    def forward(self, x):
        residual = x
        output = self.conv1(x)
        output = self.relu(self.bn1(output))  # inplace 直接对传过来的值进行修改,不再经过中间变量; bn在激活函数之前

        output = self.conv2(output)
        output = self.bn2(output)

        output += residual  # 残差  # 图像大小 相同,才能相加
        return torch.relu(output)


class BaseRestBlock_Downsample(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super(BaseRestBlock_Downsample, self).__init__()
        # 卷积, stride=2, 图像大小减半, 通道加倍
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride[0], padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)  # 在通道上 归一化 ? 理解不够深刻
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride[1], padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)  # BatchNorm2d 有学习参数 a,b
        # 两层 卷积层 都保持 输入大小不变
        self.stride = stride
        self.downsample = nn.Sequential(
            # 下采样, 不填充, 卷积核为1, 步长为2 -》 图像大小减半。  # 通过 卷积 来下采样, 图像减半 而不是 池化
            nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride[0], padding=0, bias=False),
            nn.BatchNorm2d(out_channels)
        )

    def forward(self, x):
        residual = x
        residual = self.downsample(residual)  # 图像大小减半

        output = self.conv1(x)
        output = self.relu(self.bn1(output))

        output = self.conv2(output)
        output = self.bn1(output)

        output += residual
        return torch.relu(output)


class Resnet_18(nn.Module):
    def __init__(self):
        super(Resnet_18, self).__init__()
        # 卷积 (W-F+2p)/stride[取下] + 1
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)  # same 卷积  (stride=2)图像大小 减半
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)  # 根据 池化核 补偿, 池化后 图像大小减半
        # 每层 两个 残差块
        self.layer1 = nn.Sequential(ResNetBasicBlock(64, 64, 1),  # 残差块 图像大小 不变
                                    ResNetBasicBlock(64, 64, 1))  # (64, 64, (3, 3)) * 2

        self.layer2 = nn.Sequential(BaseRestBlock_Downsample(64, 128, [2, 1]),  # 图像大小 减倍
                                    ResNetBasicBlock(128, 128, 1))

        self.layer3 = nn.Sequential(BaseRestBlock_Downsample(128, 256, [2, 1]),  # 通道加倍,图像大小减半
                                    ResNetBasicBlock(256, 256, 1))

        self.layer4 = nn.Sequential(BaseRestBlock_Downsample(256, 512, [2, 1]),  # 通道加倍,图像大小减半
                                    ResNetBasicBlock(512, 512, 1))
        self.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))  # 平均池化 输出小 图像大小为 (1, 1)

        self.fc = nn.Linear(512, 1000, bias=True)   # 平均池化(1,1)可以确定 输入个数

    def forward(self, x):
        output = self.layer1(x)
        output = self.layer2(output)
        output = self.layer3(output)
        output = self.layer4(output)
        output = self.avgpool(output)
        batch_size = output.shape[0]
        output = output.reshape(batch_size, -1)
        output = self.fc(output)
        return output


resnet18 = Resnet_18()  # 共18个卷积层
print(resnet18)

输入结果:

Resnet_18(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): ResNetBasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): ResNetBasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BaseRestBlock_Downsample(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResNetBasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BaseRestBlock_Downsample(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResNetBasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BaseRestBlock_Downsample(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): ResNetBasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

 

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值