毫米波 与 DOA

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_23947237/article/details/82532739

毫米波与 DOA 估计1

0. 前言

阵列信号处理基础本质上属于参数估计问题,和信道估计知识基本上别无二致。末学在这里整理了阵列信号处理的基础知识,包括公式推导,以及代码。一方面为了节省同行人士寻找资料和整理吸收的时间,开方便之门。另一方面为了和大家多多交流这方面的知识,寻找研究灵感。

愿以此功德,庄严佛净土。上报四重恩,下济三途苦。
若有见闻者,悉发菩提心。尽此一报身,同生极乐国。
南无大智文殊菩萨。

1. 毫米波技术的背景

无线网络数据量的巨大需求,新型应用层出不穷,迫切需要 5G 技术解决提高数据速率和降低时延的问题。边缘速率即用户最低数据速率要从目前 4G 系统的 1Mbps 提升到 100Mbps 甚至 1Gbps,另外 5G 的峰值速率则需要达到 20Gbps。当前 4G 系统的往返延迟大约为 15ms,虽然这种延迟对于现在大多数应用是足够的,但 5G 的时延需要下降到 1ms。

为了能够达到高数据率,可以通过以下三种方式来实现:

  • 使用更小的蜂窝小区,实现跨区域重用频谱,减少每个基站下竞争资源的用户数量。
  • 使用毫米波技术增加带宽。
  • 使用 MIMO 技术增加频谱效率。

在此背景下,用于室内和室外无线通信的毫米波技术已成为提供高速数据链路的新方法。毫米波用于室内通信的可行性已被证明。从一些标准的制定中也可以看出业界对毫米波应用前景的重视。除此之外,学术界、工业界和政府都对毫米波在 5G 蜂窝系统中的应用产生极大的兴趣。

虽然毫米波频段带来优势,但要想发展毫米波通信技术,信号处理技术就显得格外重要。因为信号处理在毫米波频段上与在低频段有所不同,主要的原因是:

  • 毫米波的信道模型和特点与低频段不同
  • 毫米波频率高、带宽大,使得硬件实现受到限制
  • 毫米波系统中需要在收发两端应用大量天线阵元

自由空间传播损耗,根据 Friis 定理我们知道,发射功率 PtP_t 和远场接收功率 PrP_r 存在如下关系:
Pr=GrGt(λ4πd)2Pt P_r = G_r G_t \left( \frac{\lambda}{4\pi d}\right)^2 P_t
其中,dd 表示收发间距,λ\lambda 表示信号波长,GtG_t 表示发射增益,GrG_r 表示接收增益。可以看出,各向同性路径损耗即 Gr=Gt=1G_r= G_t=1 情况下的 PtPr\frac{P_t}{P_r}λ2\lambda^2 成反比。这也就意味着与较低频段相比,因为毫米波波长更短,所以毫米波频段有着更高的路径损耗。此外,毫米波的衍射能力降低,散射现象严重,穿透损耗更大

因为毫米波的路径损耗大,所以更适合在密集化的小区中使用,因为这些蜂窝小区半径都比较小 (< 200m),毫米波通信由于毫米波波长小,单位面积的天线阵列可以部署更多天线阵元,因此毫米波更适合使用大规模天线阵列。使用大规模天线阵列不仅可以提高天线增益以弥补较大的路径损耗,还可以满足多流/多用户的需求。同时,在室外环境中毫米波的散射路径会因为路径损耗较大而变少,因此可根据接收信号不同的到达方向来区分不同信源,这使得 DOA 估计技术可以在毫米波大规模天线阵列中得到应用,并且还可以使用波束成形技术来增强天线阵列在某一方向上的发射和接收增益,并以此来解决路径损耗大的问题。

但是,因为毫米波频率高、带宽大,给硬件实现带来了挑战,原本在低频段中使用的 DOA 估计和波束成形技术无法直接搬到毫米波通信系统中,于是研究适用于毫米波的低复杂度 DOA 估计成为了大规模天线阵列应用到毫米波通信中的重要因素。

2. DOA 发展现状

  • MUSIC:谱峰搜索导致计算量大,非相干。
  • ESPRIT:减小计算量,避免谱峰搜索。
  • 加权子空间拟合 (Weight Subspace Fitting, WSF) 算法:估计精度更高,可以处理相干的信号源,算法复杂度极高,导致其运算时间过长。
  • 非相干信号子空间 (Incoherent Signal Subspace, ISM) 算法:最早出现的宽带信号 DOA 估计算法,主要原理是将宽带信号分为若干个窄带分量,然后使用经典的窄带 DOA 估计技术进行谱估计。但是 ISM 算法最大缺陷是不适用于相干的信号源
  • 相干信号子空间 (Coherent Signal Subspace, CSM) 算法:该方法比 ISM 算法的估计精度高,适用于相干的信号源。但是,由于需要给 CSM 算法一个 DOA 预估值,CSM 算法的分辨率受到该预估值的影响。
  • 近几年为了处理非均匀噪声阵列不确定性,还提出了通过最大化对数似然函数,或求解最小二乘最小化问题来确定信号子空间和噪声协方差矩阵,不需要阵列流形的精确信息便可以直接计算信号子空间,然后再根据子空间来估计 DOA,由于信号子空间和噪声协方差矩阵是以迭代闭合形式计算,因此可以有效降低复杂度。同时因信号带宽不断变大,还提出了一种宽带稀疏频谱拟合估计算法,它有效利用了稀疏空间采样中增加的自由度,并且也可以在非均匀噪声环境中拥有良好性能。
  • 根据角度域的稀疏性,提出了基于贝叶斯压缩感知学习的新型 DOA 估计算法,可以实现更精确的 DOA 估计。

由于毫米波信号波长较短,天线阵元之间的距离小,于是在毫米波移动设备中可以运用密集的天线阵列,不同的信道路径可以根据不同的到达角进行区分。所以,就可以使用 DOA 估计技术对到达角进行估计。在毫米波通信中到达移动接收机的路径数很少,在非视距 NLOS 信道中平均只有 2.4 条。因此压缩感知技术可以有效地用于稀疏空间的信道估计和 DOA 估计。

随着 5G 毫米波通信技术发展,宽带信号传输能够大大提高系统传输速率。但是,大带宽导致信号在天线阵列之间传输时间造成的相移不可忽略,并且还需要考虑频域的非平稳特性。但现有信道参数估计算法都仅适用于系统传输窄带信号的情况,还都不能应对这一问题。在使用大规模阵列进行信号传输或接收时,存在空间上的非平稳特性以及沿着阵列轴的簇的生灭,同时也需要考虑波阵面为球面波而不再是平面波。在文献2中将 Tx 到第一阶散射体以及 Rx 到最后一阶散射体之间的距离考虑在内,从而估计路径在球面波假设下的角度和时延。并且,以上问题的解决需要革新性的、能够估计球面波参数、处理时变参数和信道 “时-空-频” 非平稳特性的高分辨率算法。

参考文献


  1. 毫米波低复杂度 DOA 估计与波束成形技术的研究 ↩︎

  2. 《Scatterer Localization Using Large-Scale Antenna Arrays Based on a Spherical Wave-Front Parametric Model》 ↩︎

展开阅读全文

没有更多推荐了,返回首页