机器人正在玩一个古老的基于DOS的游戏

机器人正在玩一个古老的基于DOS的游戏。游戏中有N+1座建筑——从0到N编号,从左到右排列。编号为0的建筑高度为0个单位,编号为i的建筑的高度为H(i)个单位。

起初, 机器人在编号为0的建筑处。每一步,它跳到下一个(右边)建筑。假设机器人在第k个建筑,且它现在的能量值是E, 下一步它将跳到第个k+1建筑。它将会得到或者失去正比于与H(k+1)与E之差的能量。如果 H(k+1) > E 那么机器人就失去 H(k+1) - E 的能量值,否则它将得到 E - H(k+1) 的能量值。

游戏目标是到达第个N建筑,在这个过程中,能量值不能为负数个单位。现在的问题是机器人以多少能量值开始游戏,才可以保证成功完成游戏?

分析:
1,如果E > H(k + 1) 则E = E + (E - H(k + 1))
2,如果E < H(k + 1) 则E = E - (H(K + 1) - E)
综上所述,E = 2*E - H(K + 1)
可用上述倒推的方法解决问题
#include
#include
using namespace std;

int main()
{
int iNum;
cin >> iNum;
std::vector v;

for(int i = 0; i <iNum; i++)
{
    int iTmp;
    cin >> iTmp;
    v.push_back(iTmp);
}

int iE = 0;
int iTmp = 0;
for(int j = iNum - 1; j >= 0 ; j--)
{
    iTmp = iE +v[j];
    if(iTmp & 0x1)
       iTmp += 1; 
   
    iE = iTmp / 2; 
}
cout <<iE;
return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值