机器学习中几种距离

在机器学习中,向量是非常重要的概念。在对向量进行各种操作时,我们经常需要计算它们之间的距离。本文将介绍几种常用的向量距离计算方法,包括欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、余弦相似度和皮尔逊相关系数。

欧氏距离(Euclidean Distance)

欧氏距离是最常见的向量距离计算方法。对于两个n维向量 x x x y y y,它们之间的欧氏距离可以表示为:

d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x,y) = \sqrt{\sum_{i=1}^{n}(x_i-y_i)^2} d(x,y)=i=1n(xiyi)2

其中, x i x_i xi y i y_i yi分别表示向量 x x x y y y的第 i i i个元素。欧氏距离通常用于分类问题中的特征相似度计算。

曼哈顿距离(Manhattan Distance)

曼哈顿距离也称为城市街区距离。对于两个n维向量 x x x y y y,它们之间的曼哈顿距离可以表示为:

d ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ d(x,y) = \sum_{i=1}^{n}|x_i-y_i| d(x,y)=i=1nxiyi

曼哈顿距离通常用于图像处理、自然语言处理等领域。

切比雪夫距离(Chebyshev Distance)

切比雪夫距离也称为棋盘距离。对于两个n维向量 x x x y y y,它们之间的切比雪夫距离可以表示为:

d ( x , y ) = max ⁡ i = 1 , . . . , n ∣ x i − y i ∣ d(x,y) = \max_{i=1,...,n}|x_i-y_i| d(x,y)=i=1,...,nmaxxiyi

切比雪夫距离与曼哈顿距离相似,不同之处在于切比雪夫距离是基于向量元素之间的最大差值计算的。切比雪夫距离通常用于棋类游戏、地理信息系统等领域。

闵可夫斯基距离(Minkowski Distance)

闵可夫斯基距离是欧氏距离和曼哈顿距离的一般化。对于两个n维向量 x x x y y y,它们之间的闵可夫斯基距离可以表示为:

d ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p d(x,y)=(\sum_{i=1}^{n}|x_i-y_i|^p)^{\frac{1}{p}} d(x,y)=(i=1nxiyip)p1

其中, p p p是一个参数,当 p = 1 p=1 p=1时,闵可夫斯基距离退化为曼哈顿距离;当 p = 2 p=2 p=2时,闵可夫斯基距离退化为欧氏距离。闵可夫斯基距离通常用于关键词搜索、语音识别等领域。

余弦相似度(Cosine Similarity)

余弦相似度是一种常用的向量相似度计算方法。对于两个n维向量 x x x y y y,它们之间的余弦相似度可以表示为:

cos ⁡ ( x , y ) = x ⋅ y ∣ ∣ x ∣ ∣ × ∣ ∣ y ∣ ∣ \cos(x,y) = \frac{x\cdot y}{||x||\times ||y||} cos(x,y)=∣∣x∣∣×∣∣y∣∣xy

其中, ⋅ \cdot 表示向量的点积, ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣ ∣ ∣ y ∣ ∣ ||y|| ∣∣y∣∣分别表示向量 x x x y y y的范数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ITIRONMAN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值