标题闵可夫斯基距离(LP距离)、曼哈顿距离、欧式距离、切比雪夫距离、马哈拉诺比斯距离、相关系数、夹角余弦
在聚类中,可以将样本集合看作是向量空间中的点的集合,以该空间的距离表示样本之间相似度。常用的距离有闵可夫斯基距离,闵可夫斯基距离距离越大相似度越小,距离越小相似度越大。
定义:

1.闵可夫斯基距离

p>=1,p>=1,当p=1时是曼哈顿距离,p=2时是欧式距离,p=∞时是切比雪夫距离
2.曼哈顿距离

3.欧式距离

4.切比雪夫距离
切比雪夫距离是两个点之间距离最大的坐标系之间的距离。

5.马哈拉诺比斯距离
马哈拉诺比斯距离,简称马氏距离,也是另一种常用距离,考虑各个分量之间的相关性与各个分量的尺度无关。马哈拉诺比斯距离越大相似度越小,距离越小相似度越大。

本文详细介绍了聚类分析中常用的几种距离度量方法,包括闵可夫斯基距离、曼哈顿距离、欧式距离、切比雪夫距离、马哈拉诺比斯距离、相关系数和夹角余弦,探讨了它们在衡量样本间相似度的应用。
最低0.47元/天 解锁文章
4727

被折叠的 条评论
为什么被折叠?



