torch item()的用法

import torch
from torch.autograd import Variable
a=Variable(torch.Tensor([2,3]),requires_grad=True)
b=a+3
c=b*3
out=c.mean()
out.backward()
print("a.data")
print(a.data)
print("b.data")
print(b.data)
print("c.data")
print(c.data)

print("out.data")
print(out.data)
print(out.data.item())
print(type(out.data))
print(type(out.data.item()))
print(type(a))

print(a.grad)

输出
在这里插入图片描述
可见 torch.data 获取的类型是tensor, item则是float

torch.mean函数是用来计算张量的平均值的。它可以应用于多种情况,具体取决于输入张量的维度和参数的设置。 在第一个引用中的示例中,对于一维张量x1、二维张量x2和二维张量x3,torch.mean函数会计算它们的平均值,并返回一个标量。例如,对于x1,torch.mean(x1)会返回2.5。 在第二个引用中的示例中,对于二维张量x,torch.mean函数可以指定计算平均值的维度。通过设置dim参数,可以选择是沿着行还是沿着列计算平均值。例如,对于x,torch.mean(x, dim=0)会返回沿列方向计算的平均值,而torch.mean(x, dim=1)会返回沿行方向计算的平均值。 在第三个引用中的示例中,torch.mean函数还可以通过设置keepdim参数来保持输出张量的维度。当keepdim=True时,输出张量将保持与输入张量相同的维度。例如,对于二维张量x,torch.mean(x, dim=0, keepdim=True)会返回一个形状为(1, 3)的张量。 总结而言,torch.mean函数用于计算张量的平均值,可以根据输入张量的维度和参数的设置进行不同的计算。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Pytorch torch.mean()的简单用法](https://blog.csdn.net/qq_40714949/article/details/115485140)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [PyTorch基础(九)----- torch.mean()方法](https://blog.csdn.net/dongjinkun/article/details/115393961)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值