计算机博弈
_刘文凯_
熟练掌握c/c++, R, matlab, python,unity3D, flask,Linux,pyqt5, docker, anaconda, 爬虫,机器学习,深度学习,图神经网络,keras, tensorflow, pytorch, 生物信息学, 实变函数,泛函分析,大数据,hadoop, HDFS,Hive, spark, NLP, CV, ArcGIS等单词拼写.
展开
-
计算机博弈 Negamax 负极值算法
在计算机博弈大赛中Negamax算法是Max-Min算法的一种变形,在代码实现上,它可以更加的简洁原理敌对方一定不会选择使我能获胜的节点,也就是一方要最大值,一方要最小值,只不过最小值用负值来表示了。递归的value计算公式如下:value= -NegaMax( p, d-1)注意其中的负号,d是深度,p是此刻状态。负极大值算法的核心在于:父节点的值是各子节点的值的负数的极大值。图解伪代码:public int negamax(Board board, int depth, int alp原创 2021-11-14 22:03:34 · 1625 阅读 · 0 评论 -
计算机博弈 蒙特卡洛模拟
计算机博弈大赛中 蒙特卡洛模拟算法是一种简单有效的算法预备知识:多线程技术(没有也行)博弈游戏规则思想:蒙特卡洛算法的特征是“基于大量的随机的模拟”,意思是AI在搜索过程中,所有的棋步都是随机产生的。当轮到A下时,A的落棋随机产生,当轮到B下时,B的落棋也随机产生,直到该盘胜负已定。假如现在AI要判断出A的最佳走步,而A当前有三个可以走的棋步,于是AI对这三个走步情况进行大量随机模拟,发现其中某个走步的胜率最高,所以这个走步是最优的。图解:改进基于蒙特卡洛模拟的博弈方法比较简单,因此有众多原创 2021-11-12 22:39:28 · 3783 阅读 · 0 评论 -
计算机博弈 期望搜索算法算法 期望极大极小算法
计算机博弈大赛中 期望搜索算法是极大极小算法的一种优化,主要针对“不完备信息”游戏的博弈预备知识:广度优先搜索(BFS)深度优先搜索(DFS)极大极小算法(MaxMin算法)介绍这个其实就是把原来无权重的树编程有权重的树。这个权重就是这个子节点被选择的概率,对于某个节点的所有子节点其概率(权重)相加应当等于1。按照原来MaxMin算法的思路【详情查看MaxMin算法】,还应当在Max与Min层之间添加个“概率”层Chance,如果某节点是Max层,而子节点是Min层,那么Chance层就是Min原创 2021-11-12 22:24:45 · 4080 阅读 · 0 评论 -
计算机博弈 基础算法 阿尔法-贝塔剪枝算法 α-β剪枝算法
计算机博弈大赛中 α-β剪枝算法剪枝算法是极大极小算法的一种优化,可以更快的搜索博弈树预备知识:广度优先搜索(BFS)深度优先搜索(DFS)极大极小算法(MaxMin算法)介绍剪枝算法来源于极大极小算法,在博弈树分枝过多时可以使用这个方法有效的减少分支。因为在搜索到一定程度后,许多分支就没有了意义,那么这些无意义的分支就没必要进行搜索了。要使用剪枝算法,就必须确定从哪个方向开始搜索,一般使用从左到右。例如,一个min层有3个节点,其父节点属于max层,其中一个min节点已经确定为值10,如果另原创 2021-11-08 00:13:47 · 9835 阅读 · 0 评论 -
计算机博弈 基本算法 极大极小算法
计算机博弈大赛中最基础的算法就是极大极小算法,下面总结MaxMin算法预备知识:广度优先搜索(BFS)深度优先搜索(DFS)介绍MaxMin算法在有限深度的范围内进行搜索,假定博弈双方都是聪明的,也就是每次都会选择可能获胜的最大值。那么对于我方来说,对方每次都会选取使我方获胜的最小值MIN;我方会选择使我方获胜的最大值MAX。“值”的数字,由最后一层状态的评估函数f§确定,评估函数。定义:MAX与MIN分别代表博弈双方。p代表一个棋局状态f§表示评估函数过程:当父状态为MIN时,那么原创 2021-11-06 21:09:35 · 2930 阅读 · 0 评论