大语言模型对于“长序列”的处理方法

处理非常长的序列(如超过20万个元素的序列)对于当前的大型语言模型来说仍然是一个挑战,尤其是那些基于Transformer架构的模型,因为这些模型的自注意力机制在计算上是非常昂贵的,计算复杂度和内存需求与序列长度的平方成正比增长。然而,近年来有几种方法被提出来解决这一问题,这些方法主要通过优化注意力机制、使用不同的架构或引入额外的技术来减少计算负担。

解决方法

稀疏Transformer

稀疏Transformer采用稀疏性原理来减少需要计算的注意力对。这种方法通过限制每个元素只与序列中的一小部分元素交互,而不是整个序列,从而显著降低计算复杂度。这些交互可以是固定模式(例如,局部窗口)或学习到的模式。

Linformer

Linformer简化了自注意力机制的复杂度,将其从O(n^2) 降低到 O(n)。这通过对序列长度进行线性投影实现,有效地减少了自注意力中的参数数量和计算需求,从而使得处理长序列变得更加可行。

Performer

Performer,基于正交随机特征映射技术,提出了一种可扩展的Transformer变体,它能够高效地估算标准注意力机制,而不需要显式地计算或存储注意力矩阵。这使得Performer能够处理极其长的序列而不会遇到内存瓶颈。

Reformer

Reformer将哈希技术应用于自注意力机制,将相似的特征聚集在一起,从而减少了不必要的计算。此外,它使用可逆层来减少训练过程中的内存使用。这两种技术使Reformer能够有效处理长序列数据。

Longformer

Longformer设计了一种称为“稀疏全局注意力”的新型注意力机制,其中每个令牌只关注其邻近的几个令牌以及稀疏分布的全局令牌,这样可以显著降低处理长文档的复杂度。

Big Bird

Big Bird是一种类似于Longformer的变体,它利用了稀疏性技术,包括局部窗口注意力和全局注意力,以及随机注意力。这种混合的注意力机制使得Big Bird能够有效处理长达数千或数万个令牌的序列。

Transformer-XL

Transformer-XL通过引入“循环记忆”机制来处理长序列的依赖关系,允许信息在序列间传递,从而增强了模型对长距离信息的处理能力。

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_刘文凯_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值