在学习物体检测相关的论文中,很多地方提到Anchor的设计,刚开始只是明白特征图到原图的映射原理,但是并没有实际计算过。
这里给出关于CNN中感受野的计算过程。
- 是第k层感受野
- 是第k层卷积核尺寸ksize
- 是第i层卷积的步长stride
注:感受野的大小是从前往后推的,从输入图像到输出图像的顺序计算
以下是例子:
计算过程:
注:第一层的感受野和第一层的卷积核尺寸相同。
计算卷积核网址:Fomoro AI
在学习物体检测相关的论文中,很多地方提到Anchor的设计,刚开始只是明白特征图到原图的映射原理,但是并没有实际计算过。
这里给出关于CNN中感受野的计算过程。
注:感受野的大小是从前往后推的,从输入图像到输出图像的顺序计算
以下是例子:
计算过程:
注:第一层的感受野和第一层的卷积核尺寸相同。
计算卷积核网址:Fomoro AI