CNN中感受野的计算

在学习物体检测相关的论文中,很多地方提到Anchor的设计,刚开始只是明白特征图到原图的映射原理,但是并没有实际计算过。

这里给出关于CNN中感受野的计算过程。

                                                                {\color{Red} l_{k}=l_{k-1} + ((f_{k}-1) * \prod_{i}^{k-1}s_{i})}

  1. l_{k}是第k层感受野
  2. f_{k}是第k层卷积核尺寸ksize
  3. s_{i}是第i层卷积的步长stride

注:感受野的大小是从前往后推的,从输入图像到输出图像的顺序计算

以下是例子:

计算过程:

l_{1}=f_{1} = 3

l_{2} = l_{1} + ((f_{2}-1)*s_{1}) = 3 + (3-1)*2=7

l_{3} = l_{2} + ((f_{3}-1)*\prod_{i}^{2}) = 7+((3-1)*(2*1)) = 11

l_{4} = l_{3} + ((f_{4}-1)*\prod_{i}^{3}) = 11 + ((4-1)*(2*1*2)) = 23

注:第一层的感受野和第一层的卷积核尺寸相同。

计算卷积核网址:Fomoro AI

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值