Hash算法严格上来说并不属于加密算法,而是与加密算法属于并列关系的一种算法。
概括来说,哈希(Hash)是将目标文本转换成具有相同长度的、不可逆的杂凑字符串(或叫做消息摘要),而加密(Encrypt)是将目标文本转换成具有不同长度的、可逆的密文。
因为Hash算法在信息的转化过程中,
具体来说,两者的主要区别有以下两个:
1)Hash算法转换过程不可逆,而加密转换过程可逆
2)Hash算法无论输入的源数据的长度是多少,同一种Hash算法转换后结果的长度都相同。而加密转换后结果的长度一般与源数据的长度正相关。
关于Hash算法和加解密算法,我们讨论如下几个问题:
1、为什么Hash算法是不可逆,但是加密算法是可逆的?
这里的不可逆既指不能根据转换后的结果逆转回原文,也指对于两个输入,即使其转换结果相同也不能说这两个输入就一定相同。
因为,Hash算法的定义域是一个无限集合,但是值域确是一个有限集合,将一个无限集合映射到有限集合上,根据“鸽笼原理”,每个哈希结果都存在无数个可能的目标文本,因此哈希是一个多对一的映射,所以它也不存在逆映射。
但是对于加密算法,它的结果往往取决于输入,其定义域和值域都是无限集合,明显是一个一一映射,对于一一映射,理论上都是可逆的。
2、对于Hash算法和加解密算法一般情况下我们是如何选择的呢
基本原则是:如果被保护数据仅仅用作比较验证,在以后不需要还原成明文形式,则使用哈希;如果被保护数据在以后需要被还原成明文,则需要使用加密。
如一般情况下,几乎所有的注册用户时我们输入的密码都是使用Hash算法进行加密然后将其保存在数据库中的。当我们登录时,输入我们的密码,然后通过Hash运算,将运算结果与数据库中存储的结果比较,相同的话就登录,不同的话就代表密码错误,需要重新输入。
当我们忘记自己的密码需要修改密码时,我们需要使用密保等进行验证,验证成功后需要设置新密码,然后Hash算出新密码的结果,将数据库中的源密码的Hash结果覆盖。而不是我们忘记密码后服务器将我们的原密码给我们重新发送过来,然后我么是原密码进行登录。这是几乎是不可能的,原因就是因为Hash算法是不可逆的。
而对于使用加解密算法,例子就很多了。比如加密文件,将加密后的数据保存后者发送给他人。别人不知道密码时是无法解密的,只有输入密码后才能将加密后的文件解密出来。
OK,对于Hash算法和加解密算法就介绍到这里。先来我们来看常用的Hash算法都有哪些。
常见的Hash算法有:MD2、MD4、MD5、HAVAL、SHA、SHA-1、HMAC、HMAC-MD5、HMAC-SHA1等
下来我们看MD5和SHA1两种Hash算法在Java中的使用。
一、MD5算法
1、MD5简介
Message Digest Algorithm MD5(消息摘要算法5)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护。是计算机广泛使用的杂凑算法之一,将数据(如汉字)运算为另一固定长度值,是杂凑算法的基础原理,MD5的前身有MD2、MD3和MD4。
MD5算法具有以下特点:
1、压缩性:任意长度的数据,算出的MD5值长度都是固定的。
2、容易计算:从原数据计算出MD5值很容易。
3、抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。
4、强抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。
MD5应用场景:
1、一致性验证
2、数字签名
3、安全访问认证
2、MD5的Java代码
首先,我们还是先新建一个MD5Util类来封装MD5的操作:
package com.zyh;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MD5Util {
/**
* 计算字符串的MD5值
* @param string 明文
* @return 字符串的MD5值
*/
public static String md5(String string) {
if (string.isEmpty()) {
return "";
}
MessageDigest md5 = null;
try {
md5 = MessageDigest.getInstance("MD5");
byte[] bytes = md5.digest(string.getBytes("UTF-8"));
String result = "";
for (byte b : bytes) {
String temp = Integer.toHexString(b & 0xff);
if (temp.length() == 1) {
temp = "0" + temp;
}
result += temp;
}
return result;
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return "";
}
/**
* 计算文件的MD5值
* @param file 文件File
* @return 文件的MD5值
*/
public static String md5(File file) {
if (file == null || !file.isFile() || !file.exists()) {
return "";
}
FileInputStream in = null;
String result = "";
byte buffer[] = new byte[0124];
int len;
try {
MessageDigest md5 = MessageDigest.getInstance("MD5");
in = new FileInputStream(file);
while ((len = in.read(buffer)) != -1) {
md5.update(buffer, 0, len);
}
byte[] bytes = md5.digest();
for (byte b : bytes) {
String temp = Integer.toHexString(b & 0xff);
if (temp.length() == 1) {
temp = "0" + temp;
}
result += temp;
}
} catch (Exception e) {
e.printStackTrace();
}finally {
if(null!=in){
try {
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
return result;
}
}
在MD5Util类中,我们分别定义了对字符串和文件计算MD5值的函数,接下来只需要在main函数使用这两个函数。
二、SHA1算法
1、SHA1算法简介:
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。
SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。
SHA1算法原理大概如下:
首先进行SHA1分组:
对 于任意长度的明文,SHA1可以产生160位的摘要。对明文的分组处理过程如下:
1)对数据流尾部添加0x80标记。任意长度的明文首先需要添加位数,使明文总长度为448(mod512)位。将0x80 字节追加到数据流尾部以后,源数据流的整个长度将会发生变化,考虑到还要添加64位(8个字节)的位长度,必须填充0 以使修改后的源数据流是64字节(512位)的倍数。在明文后添加位的方法是第 一个添加位是l,其余都是0。
2)然后将真正明文的长度(没有添加位以前的明文长度)以64位表示,附加于前面已添加过位的明文后,此时的明文长度正好是 512位的倍数。当明文长度大于2的64次方时,仅仅使用低64位比特填充,附加到最后一个分组的末尾。
3)经过添加处理的明文,其长度正好为512位的整数倍,然后按512位的长度进行分组(block),可以划分成L份明文分组,我们用Y0,Y1,……,YL-1表示这些明文分组。
4)Sha1默认数据流以big endian 方式存放。
分组之后,对所得到的若干分组反复重复处理。对每个明文分组的摘要生成过程如下:
1)将512位划分成16个子明文分组,每个子分组32位
2)申请5个链接变量a、b、c、d、e,初始为H0、H1、H2、H3、H4
3)将16个子分组扩展为80份
4)80个子分组进行4轮运算,得到新的a、b、c、d、e值
5)新的链接变量与原始链接变量进行求和
6)链接变量作为下一个明文分组的初始链接变量
7)最后一个分组的5个链接变量就是SHA1摘要
2、SHA1算法Java代码:
计算SHA1值的Java代码与计算MD5值的代码基本相同,区别只在于
MessageDigest.getInstance("MD5");//这句话里面的"MD5"的不同,当计算SHA1值时只需要将"MD5"改为"SHA1"就行。
所以我们将上面计算MD5值的MD5Util类进行扩展,重新建一个HashUtil类,此类可以计算各种Hash算法的Hash值,只需要将算法名传入hash函数就行。
package com.zyh;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class HashUtil {
/**
* 计算字符串的hash值
* @param string 明文
* @param algorithm 算法名
* @return 字符串的hash值
*/
public static String hash(String string, String algorithm) {
if (string.isEmpty()) {
return "";
}
MessageDigest hash = null;
try {
hash = MessageDigest.getInstance(algorithm);
byte[] bytes = hash.digest(string.getBytes("UTF-8"));
String result = "";
for (byte b : bytes) {
String temp = Integer.toHexString(b & 0xff);
if (temp.length() == 1) {
temp = "0" + temp;
}
result += temp;
}
return result;
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}
return "";
}
/**
* 计算文件的hash值
* @param file 文件File
* @param algorithm 算法名
* @return 文件的hash值
*/
public static String hash(File file, String algorithm) {
if (file == null || !file.isFile() || !file.exists()) {
return "";
}
FileInputStream in = null;
String result = "";
byte buffer[] = new byte[0124];
int len;
try {
MessageDigest hash = MessageDigest.getInstance(algorithm);
in = new FileInputStream(file);
while ((len = in.read(buffer)) != -1) {
hash.update(buffer, 0, len);
}
byte[] bytes = hash.digest();
for (byte b : bytes) {
String temp = Integer.toHexString(b & 0xff);
if (temp.length() == 1) {
temp = "0" + temp;
}
result += temp;
}
} catch (Exception e) {
e.printStackTrace();
}finally {
if(null!=in){
try {
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
return result;
}
}
三、运行程序
在main函数中添加测试代码:
package com.zyh;
import java.io.File;
public class Test {
public static void main(String[] args) {
String str = "啦啦啦,我是字符串!";
System.out.println("MD5前的字符串:" + str);
File file = new File("D:/test.txt");
String strMD5 = MD5Util.md5(str);
System.out.println("字符串的MD5值为:" + strMD5);
String fileMD5 = MD5Util.md5(file);
System.out.println("文件的MD5值为:" + fileMD5 + "\n\n");
String hashStrMD5 = HashUtil.hash(str, "MD5");
System.out.println("hash算法字符串的MD5值为:" + hashStrMD5);
String hashStrSHA1 = HashUtil.hash(str, "SHA1");
System.out.println("hash算法字符串的SHA1值为:" + hashStrSHA1 + "\n\n");
String hashFileMD5 = HashUtil.hash(file, "MD5");
System.out.println("hash算法文件的MD5值为:" + hashFileMD5);
String hashFileSHA1 = HashUtil.hash(file, "SHA1");
System.out.println("hash算法文件的SHA1值为:" + hashFileSHA1);
}
}
运行程序,可以看到程序运行后的结果为:
四、补充
MD5、SHA1等hash算法作为一种不可逆算法,一定程度上保证了密码的安全性,但是MD5等hash算法真的是完全安全的吗,其实不然。
从概率来说16的32次方遍历后至少出现两个相同的MD5值,但是16的32次方有多大?3402823669209384634633746074317.7亿,就算全世界最快的超级计算机也要跑几十亿年才能跑完。可是,王小云教授发现,可以很快的找到MD5的“磕碰”,便是两个文件可以产生相同的“指纹”。这意味着,当你在网络上运用电子签名签署一份合同后,还可能找到其他一份具有相同签名但内容悬殊的合同,这么两份合同的真伪性便无从辨别。王小云教授的研究效果证明了利用MD5算法的磕碰可以严重威胁信息体系安全,这一发现使现在电子签名的法律效力和技能体系受到应战。因此,业界专家普林斯顿计算机教授Edward Felten等强烈呼吁信息体系的设计者赶快更换签名算法,而且他们侧重这是一个需要当即处理的疑问。
同时美国国家技能与规范局(NIST)于2004年8月24日宣布专门谈论,谈论的首要内容为:“在近来的世界暗码学会议(Crypto 2004)上,研究人员宣布他们发现了破解数种HASH算法的办法,其间包含MD4,MD5,HAVAL-128,RIPEMD还有 SHA-0。剖析标明,于1994年代替SHA-0成为联邦信息处理规范的SHA-1的削弱条件的变种算法能够被破解;但完好的SHA-1并没有被破解,也没有找到SHA-1的碰撞。研究结果阐明SHA-1的安全性暂时没有问题,但随着技能的发展,技能与规范局计划在2010年之前逐步筛选SHA-1,换用别的更长更安全的算法(如SHA-224、SHA-256、SHA-384和SHA-512)来代替。”
所以从这里也可以看出,单步的hash算法还是存在很大的漏洞,容易被碰撞。
那么该如何进一步的加强hash算法的安全性呢,可以使用如下的办法:
1)hash+盐(salt)
salt可以简单的理解成:随机产生的一定长度的,可以和密码相结合,从而使hash算法产生不同结果的字符串。也就相当于你的新密码 = 旧密码 + 随机的盐值,然后对新密码进行hash。
优点:这种方法会极大防止受到彩虹表的攻击,因为即便攻击者构造出彩虹表,因为你使用了 hash(密码+ salt),攻击者彩虹表里的哈希值(hash(密码))和你数据库中的哈希值是不同的。
缺点: 如果攻击者知道了salt和你的哈希值,就可以计算出你的原始密码(当然也没有那么容易)
2)增加计算的时间 (哈希 + salt + Iteration)
通过迭代计算的方式增加计算密码的成本。迭代的周期控制在用户可以接受范围内,这样攻击者的计算和时间成本就会大大增加。
类似的方法可以使用: BCript
hashed value = BCript(password,salt,cost factor)
一般到此时,hash结果就比较安全了。但是如果还需要更加地安全,可以继续对这种方法计算出来的hash值使用加密算法加密。
然后做到:
1)定时更换密钥(准备一组密钥定时更换,首先通过密钥解密加密存储的密码得到 bscript计算出的hash值,在用新的密钥进行加密)
2)密钥存储在在不同的数据源 (通过将密钥存储在不同的数据源的方法,进一步增加了破解难度,因为需要同时获得用户密码表数据,同时要获得其他数据源存储的密钥)
OK,关于加密解密相关的内容就先写到这里。
参考:http://blog.csdn.net/christ2/article/details/51661011
http://blog.csdn.net/weiliangliang111/article/details/51457874