SPSS Modeler 集成学习算法实践(第十五章)

本文介绍了如何在SPSS Modeler中应用集成学习算法,包括Bagging和Boosting在C&R树中的实现,以及随机森林的实践。通过案例分析了不同算法在银行贷款数据上的效果,展示了模型的准确率、预测变量重要性和组件模型详细信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

今天,小编和大家一起学习应用SPSS Modeler软件进行集成学习算法。
在SPSS Modeler中,Bagging和Boosting不是作为一个单独节点提供功能,而是集成在具体的算法节点中,作为功能选项被调用。随机森林是作为一个单独节点”随机树“提供功能,基分类器被固定为C&RT。

案例:Demo数据文件“bankloan.sav”。
为了比较3个集成算法的效果,将针对该数据进行多次建模。

数据展示
在这里插入图片描述

数据流
在这里插入图片描述

在”分区“节点后,依次添加3个”C&R树“节点以及一个”随机树“节点,用作比较单棵C&R树,使用Bagging的C&R树、Boosting的C&R树及随机森林的结果。

一、Bagging和Boosting实践

C&R树“节点在前面十三章介绍过,本次只进行Bagging和Boosting的相关的选项

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值