今天,小编和大家一起学习应用SPSS Modeler软件进行集成学习算法。
在SPSS Modeler中,Bagging和Boosting不是作为一个单独节点提供功能,而是集成在具体的算法节点中,作为功能选项被调用。随机森林是作为一个单独节点”随机树“提供功能,基分类器被固定为C&RT。
案例:Demo数据文件“bankloan.sav”。
为了比较3个集成算法的效果,将针对该数据进行多次建模。
数据展示:
数据流:
在”分区“节点后,依次添加3个”C&R树“节点以及一个”随机树“节点,用作比较单棵C&R树,使用Bagging的C&R树、Boosting的C&R树及随机森林的结果。
一、Bagging和Boosting实践
”C&R树“节点在前面十三章介绍过,本次只进行Bagging和Boosting的相关的选项