
今天,小编和大家一起学习应用SPSS Modeler软件进行集成学习算法。
在SPSS Modeler中,Bagging和Boosting不是作为一个单独节点提供功能,而是集成在具体的算法节点中,作为功能选项被调用。随机森林是作为一个单独节点”随机树“提供功能,基分类器被固定为C&RT。
案例:Demo数据文件“bankloan.sav”。
为了比较3个集成算法的效果,将针对该数据进行多次建模。
数据展示:

数据流:

在”分区“节点后,依次添加3个”C&R树“节点以及一个”随机树“节点,用作比较单棵C&R树,使用Bagging的C&R树、Boosting的C&R树及随机森林的结果。
一、Bagging和Boosting实践
”C&R树“节点在前面十三章介绍过,本次只进行Bagging和Boosting的相关的选项

本文介绍了如何在SPSS Modeler中应用集成学习算法,包括Bagging和Boosting在C&R树中的实现,以及随机森林的实践。通过案例分析了不同算法在银行贷款数据上的效果,展示了模型的准确率、预测变量重要性和组件模型详细信息。
最低0.47元/天 解锁文章
1570

被折叠的 条评论
为什么被折叠?



