SparkStream实时分析统计展示共享单车使用人数

本文介绍了一种使用SparkStream实时处理Kafka中的共享单车使用人数数据,统计1秒时间窗口内的用户数量,并将结果通过Flask搭建的Web应用进行实时展示的方法。数据集覆盖2011年至2012年的每小时骑车人数,通过Python将数据传入Kafka,Spark Streaming进行处理,最终利用Socket.IO进行图表更新。
摘要由CSDN通过智能技术生成

实验结果展示

image

数据集

hour.csv

instant,dteday,season,yr,mnth,hr,holiday,weekday,workingday,weathersit,temp,atemp,hum,windspeed,casual,registered,cnt
1,2011-01-01,1,0,1,0,0,6,0,1,0.24,0.2879,0.81,0,3,13,16
此数据集包含的是从 2011 年 1 月 1 日到 2012 年 12 月 31 日期间每天每小时的骑车人数。骑车用户分成临时用户和注册用户,cnt 列是骑车用户数汇总列。你可以在上方看到前几行数据。

实验说明

将数据文件中每小时的骑车人数当做每10秒的使用人数使用,传入kafka中,由Spark实时读取并统计时间窗口中的使用人数,再传回kafka,界面实时展示时间窗口的统计结果
  1. python 读入数据集文件,并将使用人数字段每隔0.1s传入 kafka 队列
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值