概率论基础

阅读了江苏省扬州中学的胡渊明的2013年的概率论论文收获很大,以下是自己的一点点总结

首先是对基本概念和公式的理解:

一.概率

1.1概率空间

设样本空间为Y,定义事件为Y的某个子集

在acm中,我们可以认为Y的任何一个子集都是一个事件,所有事件的集合记为F

概率测度P,是事件集合到实数的一个函数.但并不是所有的概率测度都是合理的.

一个合理的概率测度需要满足3条公理:

(1)对于任意的事件A,有P(A)>=0(非负性).

(2)P(Y)=1.

(3)对于事件A和B,如果A交B=空集,有P(A并B)=P(A)+P(B)(可加性).

我们称符合要求的三元组(Y, F , P )为概率空间.

1.2条件概率

在条件概率中我们要避免"先后性"的枷锁,事件只是样本空间中的某个子集,并没有时间这个属性,

计算条件概率的公式如下:P(A|B) = P(AB)/P(B)  在B事件发生的情况下A事件发生的概率

就是把事件B看成新的样本空间,新的概率测度往往称为条件概率,条件概率公式揭示的是两个样本空间上的概率测度的关系

1.3全概率公式

如果B1,B2,B3,.......,Bn是概率空间的一个划分,那么有

P(A|B)= sum ( P(A|Bk)*P(Bk))(1<=k<=n )

这个公式是分类讨论方法研究概率问题时的基础,几乎所有的概率问题都涉及到这个公式.

1.4Bayes公式

考虑公式P(A|B)*P(B)=P(AB)=P(B|A)*P(A),忽略中间一项,将两边同时除以P(B),得到

P(A|B) = P(B|A)P(A) / P(B)

该公式在计算逆向概率时有用:

由于通常已知的是一系列的条件概率P(B|Ak),其中A1,A2,A3,....,An是样本空间的一个划分,这种情况下还可以和全概率公式联合起来

P(Ak|B) = P(B|A)*P(A)/P(B) = P(B|A)*(P(A))/sum(P(B|Aj)*P(Aj))

二.随机变量和期望

2.1随机变量的定义

随机变量是定义在样本空间Y上的确定的实值函数

函数X:Y->R被称为一个随机变量

在大多数情况下,有了随机变量以后就可以抛弃对原本样本空间的关注,而是集中注意于对于每个实值,随机变量能够取到该值的概率,这个过程实际上是将样本空间重新划分的一个过程,将这个函数下取的同一实数值的样本空间中的元素合并了.

2.2随机变量的期望

期望是对随机变量表现出的平均情况的一种刻画

对于一个随机变量,定义其期望如下:

E(X) = sum ( P(w)*X(w)) = sum ( x*P ( X == x ))

X==x表示的是一个事件,等价于集合{|w属于Y,X(w) == x },前一个式子是从输入的角度入手,后一个式子是从输出的角度入手,将样本空间进行了划分(将输出相同的输入看成一个整体),即将不同的输出值按概率加权后求和

由于对于样本空间的某些元素,随机变量的输出值很可能是相同的,有时我们就可以不从样本空间的角度取考虑随机变量,而是直接考虑"随机变量取某个特定的值"这个事件

2.3随机变量的独立性和乘积的期望

对于两个随机事件X1,X2和实数x1属于X1(Y),x2属于X2(Y),如果有P(X1==x1,X2==x2) = P ( X1==x1) * P (X2==x2),就称X1,X2相互独立

两个独立的随机变量的重要性质:其积的期望等于期望的积

2.4期望的线性性质

线性性(可加性)是期望的性质中重要的一项,不管两个随机变量X1,X2是否独立,总有

E(aX1 + bX2 ) = aE[X1] + bE[X2]

这个性质在竞赛中应用常常表现为将一个大的随机变量分成小的随机变量的和,那么大的随机变量的期望就是每个小的随机变量的期望的和

2.5全期望公式

如果将受约束的随机变量记作X|A,那么任意x属于X(Y),我们有

P((X|A)==x) = P ( X = x , A )/P(A);

这就是Y上的随机变量X在新的样本空间A上,形成新的随机变量X|A的全部信息

E [ E [ X | Y ] ] = E [ X ]

根据上面的分析X|Y==y是在样本Y==y上面的一个随机变量,因此E[X|Y==y]是一个确定的数值,如果不明确指定Y的取值,则E[X|Y]是一个新的随机变量,其期望表示在Y的各种特定输出y的前提下,E[X|Y==y]按照P(Y==y)加权的和,这个公式的意义类似于全概率公式,是的我们可以对期望问题进行分类讨论.全概率公式也是这个公式的基础




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值