👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路
coco8.yaml
- 通常用于配置与 COCO 数据集相关的参数,可能是
针对一个简化或特定版本的 COCO 数据集,包含 8 个类别
。它会指定数据集的路径、划分方式,以及模型训练和评估所需的各种超参数等,用于训练和评估目标检测模型,识别这 8 个类别的物体。
- 通常用于配置与 COCO 数据集相关的参数,可能是
coco8-multispectral.yaml
- 类似于coco8.yaml,但
专门用于多光谱数据的配置。可能涉及到对多光谱图像的处理参数
,如不同光谱通道的组合方式、归一化方法等,以适应多光谱图像的目标检测任务,同样是针对 8 个类别。
- 类似于coco8.yaml,但
coco8-pose.yaml
- 主要用于
姿态估计任务,基于 COCO 数据集的 8 个类别
。除了常规的数据集配置信息外,还会包含与人体姿态或物体姿态相关的标注信息和处理参数,例如关键点的定义、姿态评估指标等,用于训练能够预测物体姿态的模型。
- 主要用于
coco8-seg.yaml
- 用于
图像分割任务,针对 COCO 数据集的 8 个类别
。配置文件中会包含图像分割所需的参数,如分割掩码的格式、标注信息的处理方式,以及模型训练的相关超参数,用于训练图像分割模型,将图像中的物体按照 8 个类别进行分割。
- 用于
coco128.yaml
- 用于配置包含
128 个类别的 COCO 数据集相关参数
。与其他文件类似,它会指定数据集的路径、划分方式、超参数等,用于训练和评估能够处理 128 个类别物体的目标检测、图像分割或其他相关任务
的模型,相比coco8.yaml等,类别更为丰富,任务可能更复杂。
- 用于配置包含
coco8.yaml
-
# 数据集在文件系统中的根路径,后续train、val、test等路径均基于此路径 path: ../datasets/coco8 # 训练集图像所在的相对路径,相对于path指定的根路径,这些图像用于训练模型 train: images/train # 验证集图像所在的相对路径,相对于path指定的根路径,用于在训练过程中验证模型的性能 val: images/val # 测试集图像所在的相对路径,此处留空,可能表示尚未明确指定测试集路径,或测试集与验证集共用, # 也可能需要在后续根据具体情况手动设置 test: # 类别编号与实际类别名称的对应关系,在模型训练和预测时,模型会根据这些编号识别不同的物体类别 names: 0: person # 编号0对应的类别是行人 1: bicycle # 编号1对应的类别是自行车 2: car # 编号2对应的类别是汽车 3: motorcycle # 编号3对应的类别是摩托车 4: airplane # 编号4对应的类别是飞机 5: bus # 编号5对应的类别是公交车 6: train # 编号6对应的类别是火车 7: truck # 编号7对应的类别是卡车 8: boat # 编号8对应的类别是船 9: traffic light # 编号9对应的类别是交通信号灯 10: fire hydrant # 编号10对应的类别是消防栓 11: stop sign # 编号11对应的类别是停车标志 12: parking meter # 编号12对应的类别是停车计时器 13: bench # 编号13对应的类别是长椅 14: bird # 编号14对应的类别是鸟 15: cat # 编号15对应的类别是猫 16: dog # 编号16对应的类别是狗 17: horse # 编号17对应的类别是马 18: sheep # 编号18对应的类别是绵羊 19: cow # 编号19对应的类别是牛 20: elephant # 编号20对应的类别是大象 21: bear # 编号21对应的类别是熊 22: zebra # 编号22对应的类别是斑马 23: giraffe # 编号23对应的类别是长颈鹿 24: backpack # 编号24对应的类别是背包 25: umbrella # 编号25对应的类别是雨伞 26: handbag # 编号26对应的类别是手提包 27: tie # 编号27对应的类别是领带 28: suitcase # 编号28对应的类别是行李箱 29: frisbee # 编号29对应的类别是飞盘 30: skis # 编号30对应的类别是滑雪板 31: snowboard # 编号31对应的类别是单板滑雪板 32: sports ball # 编号32对应的类别是运动球类 33: kite # 编号33对应的类别是风筝 34: baseball bat # 编号34对应的类别是棒球棒 35: baseball glove # 编号35对应的类别是棒球手套 36: skateboard # 编号36对应的类别是滑板 37: surfboard # 编号37对应的类别是冲浪板 38: tennis racket # 编号38对应的类别是网球拍 39: bottle # 编号39对应的类别是瓶子 40: wine glass # 编号40对应的类别是酒杯 41: cup # 编号41对应的类别是杯子 42: fork # 编号42对应的类别是叉子 43: knife # 编号43对应的类别是刀 44: spoon # 编号44对应的类别是勺子 45: bowl # 编号45对应的类别是碗 46: banana # 编号46对应的类别是香蕉 47: apple # 编号47对应的类别是苹果 48: sandwich # 编号48对应的类别是三明治 49: orange # 编号49对应的类别是橙子 50: broccoli # 编号50对应的类别是西兰花 51: carrot # 编号51对应的类别是胡萝卜 52: hot dog # 编号52对应的类别是热狗 53: pizza # 编号53对应的类别是披萨 54: donut # 编号54对应的类别是甜甜圈 55: cake # 编号55对应的类别是蛋糕 56: chair # 编号56对应的类别是椅子 57: couch # 编号57对应的类别是沙发 58: potted plant # 编号58对应的类别是盆栽植物 59: bed # 编号59对应的类别是床 60: dining table # 编号60对应的类别是餐桌 61: toilet # 编号61对应的类别是马桶 62: tv # 编号62对应的类别是电视 63: laptop # 编号63对应的类别是笔记本电脑 64: mouse # 编号64对应的类别是鼠标 65: remote # 编号65对应的类别是遥控器 66: keyboard # 编号66对应的类别是键盘 67: cell phone # 编号67对应的类别是手机 68: microwave # 编号68对应的类别是微波炉 69: oven # 编号69对应的类别是烤箱 70: toaster # 编号70对应的类别是烤面包机 71: sink # 编号71对应的类别是水槽 72: refrigerator # 编号72对应的类别是冰箱 73: book # 编号73对应的类别是书 74: clock # 编号74对应的类别是时钟 75: vase # 编号75对应的类别是花瓶 76: scissors # 编号76对应的类别是剪刀 77: teddy bear # 编号77对应的类别是泰迪熊 78: hair drier # 编号78对应的类别是吹风机 79: toothbrush # 编号79对应的类别是牙刷 # 数据集的下载链接,通过该链接可获取整个数据集压缩包 download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
coco8-multispectral.yaml
# 数据集在文件系统中的根路径,其他路径配置以此为基础。
# 后续的训练集、验证集路径等都是相对于此路径进行设置。
path:../datasets/coco8-multispectral
# 训练集图像所在的相对路径,相对于path指定的根路径。
# 这里存放用于模型训练的多光谱图像数据。
train: images/train
# 验证集图像所在的相对路径,同样相对于path根路径。
# 在模型训练过程中,使用这些图像来验证模型的性能表现。
val: images/val
# 测试集图像所在的相对路径,当前为空。
# 可能后续会补充测试集路径,用于最终评估训练好的模型性能。
test:
# 定义多光谱图像的通道数为10。
# 表明数据集中的图像具有10个不同的光谱通道,
# 每个通道可能对应不同波长范围的光信息。
channels: 10
# 类别编号与实际类别名称的对应关系。
# 在模型训练和预测时,模型会根据这些编号来识别不同的物体类别。
names:
0: person # 编号0对应的类别是行人
1: bicycle # 编号1对应的类别是自行车
2: car # 编号2对应的类别是汽车
3: motorcycle # 编号3对应的类别是摩托车
4: airplane # 编号4对应的类别是飞机
5: bus # 编号5对应的类别是公交车
6: train # 编号6对应的类别是火车
7: truck # 编号7对应的类别是卡车
8: boat # 编号8对应的类别是船
9: traffic light # 编号9对应的类别是交通信号灯
10: fire hydrant # 编号10对应的类别是消防栓
11: stop sign # 编号11对应的类别是停车标志
12: parking meter # 编号12对应的类别是停车计时器
13: bench # 编号13对应的类别是长椅
14: bird # 编号14对应的类别是鸟
15: cat # 编号15对应的类别是猫
16: dog # 编号16对应的类别是狗
17: horse # 编号17对应的类别是马
18: sheep # 编号18对应的类别是绵羊
19: cow # 编号19对应的类别是牛
20: elephant # 编号20对应的类别是大象
21: bear # 编号21对应的类别是熊
22: zebra # 编号22对应的类别是斑马
23: giraffe # 编号23对应的类别是长颈鹿
24: backpack # 编号24对应的类别是背包
25: umbrella # 编号25对应的类别是雨伞
26: handbag # 编号26对应的类别是手提包
27: tie # 编号27对应的类别是领带
28: suitcase # 编号28对应的类别是行李箱
29: frisbee # 编号29对应的类别是飞盘
30: skis # 编号30对应的类别是滑雪板
31: snowboard # 编号31对应的类别是单板滑雪板
32: sports ball # 编号32对应的类别是运动球类
33: kite # 编号33对应的类别是风筝
34: baseball bat # 编号34对应的类别是棒球棒
35: baseball glove # 编号35对应的类别是棒球手套
36: skateboard # 编号36对应的类别是滑板
37: surfboard # 编号37对应的类别是冲浪板
38: tennis racket # 编号38对应的类别是网球拍
39: bottle # 编号39对应的类别是瓶子
40: wine glass # 编号40对应的类别是酒杯
41: cup # 编号41对应的类别是杯子
42: fork # 编号42对应的类别是叉子
43: knife # 编号43对应的类别是刀
44: spoon # 编号44对应的类别是勺子
45: bowl # 编号45对应的类别是碗
46: banana # 编号46对应的类别是香蕉
47: apple # 编号47对应的类别是苹果
48: sandwich # 编号48对应的类别是三明治
49: orange # 编号49对应的类别是橙子
50: broccoli # 编号50对应的类别是西兰花
51: carrot # 编号51对应的类别是胡萝卜
52: hot dog # 编号52对应的类别是热狗
53: pizza # 编号53对应的类别是披萨
54: donut # 编号54对应的类别是甜甜圈
55: cake # 编号55对应的类别是蛋糕
56: chair # 编号56对应的类别是椅子
57: couch # 编号57对应的类别是沙发
58: potted plant # 编号58对应的类别是盆栽植物
59: bed # 编号59对应的类别是床
60: dining table # 编号60对应的类别是餐桌
61: toilet # 编号61对应的类别是马桶
62: tv # 编号62对应的类别是电视
63: laptop # 编号63对应的类别是笔记本电脑
64: mouse # 编号64对应的类别是鼠标
65: remote # 编号65对应的类别是遥控器
66: keyboard # 编号66对应的类别是键盘
67: cell phone # 编号67对应的类别是手机
68: microwave # 编号68对应的类别是微波炉
69: oven # 编号69对应的类别是烤箱
70: toaster # 编号70对应的类别是烤面包机
71: sink # 编号71对应的类别是水槽
72: refrigerator # 编号72对应的类别是冰箱
73: book # 编号73对应的类别是书
74: clock # 编号74对应的类别是时钟
75: vase # 编号75对应的类别是花瓶
76: scissors # 编号76对应的类别是剪刀
77: teddy bear # 编号77对应的类别是泰迪熊
78: hair drier # 编号78对应的类别是吹风机
79: toothbrush # 编号79对应的类别是牙刷
# 数据集的下载链接,通过该链接可获取整个多光谱数据集压缩包。
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-multispectral.zip
coco8-pose.yaml
- 关键点的形状配置
# 数据集在文件系统中的根路径,后续train、val、test等路径均基于此路径 path: ../datasets/coco8-pose # 训练集图像所在的相对路径,相对于path指定的根路径,这些图像用于训练模型 train: images/train # 验证集图像所在的相对路径,相对于path指定的根路径,用于在训练过程中验证模型的性能 val: images/val # 测试集图像所在的相对路径,此处留空,可能表示尚未明确指定测试集路径, # 或测试集与验证集共用,也可能需要在后续根据具体情况手动设置 test: # 关键点的形状配置,[17, 3] 表示数据集中人体关键点有17个, # 每个关键点用包含3个元素的数组来描述(通常可能是x坐标、y坐标和置信度) kpt_shape: [17, 3] # 关键点翻转索引配置,用于在进行图像翻转操作时, # 确定对应关键点的映射关系。例如,索引0的关键点在翻转后对应索引0的关键点, # 索引2的关键点在翻转后对应索引1的关键点,以此类推。这对于数据增强等操作很有用。 flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # 类别编号与实际类别名称的对应关系,在模型训练和预测时, # 模型会根据这些编号识别不同的物体类别。这里只有一个类别“person”, # 表明该数据集主要用于人体姿态相关的任务。 names: 0: person # 数据集的下载链接,通过该链接可获取整个数据集压缩包 download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
coco8-seg.yaml
- 图像分割任务
# 数据集在文件系统中的根路径,后续的训练集、验证集和测试集路径都基于此路径 path: ../datasets/coco8-seg # 训练集图像的存放路径,相对于根路径,这些图像用于训练图像分割模型 train: images/train # 验证集图像的存放路径,相对于根路径,用于在训练过程中验证模型的性能, # 查看模型在这些数据上的分割效果,以便调整模型参数 val: images/val # 测试集图像的存放路径,此处未设置,可能后续根据实际情况补充, # 用于最终评估训练好的模型在未知数据上的分割表现 test: # 类别编号与类别名称的对应关系,用于在图像分割任务中识别不同的物体类别 names: 0: person # 编号0对应的物体类别是行人 1: bicycle # 编号1对应的物体类别是自行车 2: car # 编号2对应的物体类别是汽车 3: motorcycle # 编号3对应的物体类别是摩托车 4: airplane # 编号4对应的物体类别是飞机 5: bus # 编号5对应的物体类别是公交车 6: train # 编号6对应的物体类别是火车 7: truck # 编号7对应的物体类别是卡车 8: boat # 编号8对应的物体类别是船 9: traffic light # 编号9对应的物体类别是交通信号灯 10: fire hydrant # 编号10对应的物体类别是消防栓 11: stop sign # 编号11对应的物体类别是停车标志 12: parking meter # 编号12对应的物体类别是停车计时器 13: bench # 编号13对应的物体类别是长椅 14: bird # 编号14对应的物体类别是鸟 15: cat # 编号15对应的物体类别是猫 16: dog # 编号16对应的物体类别是狗 17: horse # 编号17对应的物体类别是马 18: sheep # 编号18对应的物体类别是绵羊 19: cow # 编号19对应的物体类别是牛 20: elephant # 编号20对应的物体类别是大象 21: bear # 编号21对应的物体类别是熊 22: zebra # 编号22对应的物体类别是斑马 23: giraffe # 编号23对应的物体类别是长颈鹿 24: backpack # 编号24对应的物体类别是背包 25: umbrella # 编号25对应的物体类别是雨伞 26: handbag # 编号26对应的物体类别是手提包 27: tie # 编号27对应的物体类别是领带 28: suitcase # 编号28对应的物体类别是行李箱 29: frisbee # 编号29对应的物体类别是飞盘 30: skis # 编号30对应的物体类别是滑雪板 31: snowboard # 编号31对应的物体类别是单板滑雪板 32: sports ball # 编号32对应的物体类别是运动球类 33: kite # 编号33对应的物体类别是风筝 34: baseball bat # 编号34对应的物体类别是棒球棒 35: baseball glove # 编号35对应的物体类别是棒球手套 36: skateboard # 编号36对应的物体类别是滑板 37: surfboard # 编号37对应的物体类别是冲浪板 38: tennis racket # 编号38对应的物体类别是网球拍 39: bottle # 编号39对应的物体类别是瓶子 40: wine glass # 编号40对应的物体类别是酒杯 41: cup # 编号41对应的物体类别是杯子 42: fork # 编号42对应的物体类别是叉子 43: knife # 编号43对应的物体类别是刀 44: spoon # 编号44对应的物体类别是勺子 45: bowl # 编号45对应的物体类别是碗 46: banana # 编号46对应的物体类别是香蕉 47: apple # 编号47对应的物体类别是苹果 48: sandwich # 编号48对应的物体类别是三明治 49: orange # 编号49对应的物体类别是橙子 50: broccoli # 编号50对应的物体类别是西兰花 51: carrot # 编号51对应的物体类别是胡萝卜 52: hot dog # 编号52对应的物体类别是热狗 53: pizza # 编号53对应的物体类别是披萨 54: donut # 编号54对应的物体类别是甜甜圈 55: cake # 编号55对应的物体类别是蛋糕 56: chair # 编号56对应的物体类别是椅子 57: couch # 编号57对应的物体类别是沙发 58: potted plant # 编号58对应的物体类别是盆栽植物 59: bed # 编号59对应的物体类别是床 60: dining table # 编号60对应的物体类别是餐桌 61: toilet # 编号61对应的物体类别是马桶 62: tv # 编号62对应的物体类别是电视 63: laptop # 编号63对应的物体类别是笔记本电脑 64: mouse # 编号64对应的物体类别是鼠标 65: remote # 编号65对应的物体类别是遥控器 66: keyboard # 编号66对应的物体类别是键盘 67: cell phone # 编号67对应的物体类别是手机 68: microwave # 编号68对应的物体类别是微波炉 69: oven # 编号69对应的物体类别是烤箱 70: toaster # 编号70对应的物体类别是烤面包机 71: sink # 编号71对应的物体类别是水槽 72: refrigerator # 编号72对应的物体类别是冰箱 73: book # 编号73对应的物体类别是书 74: clock # 编号74对应的物体类别是时钟 75: vase # 编号75对应的物体类别是花瓶 76: scissors # 编号76对应的物体类别是剪刀 77: teddy bear # 编号77对应的物体类别是泰迪熊 78: hair drier # 编号78对应的物体类别是吹风机 79: toothbrush # 编号79对应的物体类别是牙刷 # 数据集的下载链接,通过该链接可获取整个用于图像分割任务的数据集压缩包 # 若遇到“当前不支持该文件类型,请尝试其他文件”的报错, # 可能是下载工具或系统不支持该文件的下载或解压,需检查相关设置或更换工具 download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
coco128.yaml、coco128-seg.yaml
文件内容类似,不再赘述
coco-pose.yaml
-
# 数据集在文件系统中的根路径,后续train、val、test等文件路径均基于此路径 path: ../datasets/coco-pose # 训练集对应的文件,这里是一个文本文件(train2017.txt), # 该文件可能包含了训练集图像的相关信息(如文件名、标注信息的索引等) train: train2017.txt # 验证集对应的文件,val2017.txt文件用于存储验证集图像的相关信息, # 用于在模型训练过程中验证模型的性能 val: val2017.txt # 测试集对应的文件,test-dev2017.txt文件存储测试集图像的相关信息, # 用于最终评估训练好的模型的性能 test: test-dev2017.txt # 关键点的形状配置,[17, 3] 表示数据集中人体关键点有17个, # 每个关键点用包含3个元素的数组来描述(通常是x坐标、y坐标和关键点的可见性标识) kpt_shape: [17, 3] # 关键点翻转索引配置,用于在进行图像翻转操作时, # 确定对应关键点的映射关系。例如,索引0的关键点在翻转后对应索引0的关键点, # 索引2的关键点在翻转后对应索引1的关键点,以此类推。这对于数据增强等操作很有用。 flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # 类别编号与实际类别名称的对应关系,在模型训练和预测时, # 模型会根据这些编号识别不同的物体类别。这里只有一个类别“person”, # 表明该数据集主要用于人体姿态相关的任务。 names: 0: person # 数据集的下载相关代码 download: | # 从pathlib模块导入Path类,用于处理文件路径 from pathlib import Path # 从ultralytics.utils.downloads模块导入download函数,用于下载文件 from ultralytics.utils.downloads import download # 获取数据集的根目录 dir = Path(yaml["path"]) # 定义基础下载链接 url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" # 定义标注数据的下载链接列表,这里是包含姿态标注的COCO 2017标注数据压缩包 urls = [f"{url}coco2017labels-pose.zip"] # 调用download函数下载标注数据压缩包到数据集根目录的父目录 download(urls, dir=dir.parent) # 定义图像数据的下载链接列表 urls = [ "http://images.cocodataset.org/zips/train2017.zip", # 训练集图像压缩包,约19G,包含118k张图像 "http://images.cocodataset.org/zips/val2017.zip", # 验证集图像压缩包,约1G,包含5k张图像 "http://images.cocodataset.org/zips/test2017.zip", # 测试集图像压缩包,约7G,包含41k张图像(可选) ] # 调用download函数下载图像数据压缩包到数据集根目录下的images子目录,使用3个线程进行下载 download(urls, dir=dir / "images", threads=3)