开源项目实战学习之YOLO11:ultralytics-cfg-datasets-coco8.yaml文件(三)

👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路


  • coco8.yaml
    • 通常用于配置与 COCO 数据集相关的参数,可能是针对一个简化或特定版本的 COCO 数据集,包含 8 个类别。它会指定数据集的路径、划分方式,以及模型训练和评估所需的各种超参数等,用于训练和评估目标检测模型,识别这 8 个类别的物体。
  • coco8-multispectral.yaml
    • 类似于coco8.yaml,但专门用于多光谱数据的配置。可能涉及到对多光谱图像的处理参数,如不同光谱通道的组合方式、归一化方法等,以适应多光谱图像的目标检测任务,同样是针对 8 个类别。
  • coco8-pose.yaml
    • 主要用于姿态估计任务,基于 COCO 数据集的 8 个类别。除了常规的数据集配置信息外,还会包含与人体姿态或物体姿态相关的标注信息和处理参数,例如关键点的定义、姿态评估指标等,用于训练能够预测物体姿态的模型。
  • coco8-seg.yaml
    • 用于图像分割任务,针对 COCO 数据集的 8 个类别。配置文件中会包含图像分割所需的参数,如分割掩码的格式、标注信息的处理方式,以及模型训练的相关超参数,用于训练图像分割模型,将图像中的物体按照 8 个类别进行分割。
  • coco128.yaml
    • 用于配置包含 128 个类别的 COCO 数据集相关参数。与其他文件类似,它会指定数据集的路径、划分方式、超参数等,用于训练和评估能够处理 128 个类别物体的目标检测、图像分割或其他相关任务的模型,相比coco8.yaml等,类别更为丰富,任务可能更复杂。

coco8.yaml

  • # 数据集在文件系统中的根路径,后续train、val、test等路径均基于此路径
    path: ../datasets/coco8
    
    # 训练集图像所在的相对路径,相对于path指定的根路径,这些图像用于训练模型
    train: images/train
    
    # 验证集图像所在的相对路径,相对于path指定的根路径,用于在训练过程中验证模型的性能
    val: images/val
    
    # 测试集图像所在的相对路径,此处留空,可能表示尚未明确指定测试集路径,或测试集与验证集共用,
    # 也可能需要在后续根据具体情况手动设置
    test: 
    
    # 类别编号与实际类别名称的对应关系,在模型训练和预测时,模型会根据这些编号识别不同的物体类别
    names:
      0: person           # 编号0对应的类别是行人
      1: bicycle          # 编号1对应的类别是自行车
      2: car              # 编号2对应的类别是汽车
      3: motorcycle       # 编号3对应的类别是摩托车
      4: airplane         # 编号4对应的类别是飞机
      5: bus              # 编号5对应的类别是公交车
      
      6: train            # 编号6对应的类别是火车
      7: truck            # 编号7对应的类别是卡车
      8: boat             # 编号8对应的类别是船
      9: traffic light    # 编号9对应的类别是交通信号灯
      
      10: fire hydrant    # 编号10对应的类别是消防栓
      
      11: stop sign       # 编号11对应的类别是停车标志
      
      12: parking meter   # 编号12对应的类别是停车计时器
      13: bench           # 编号13对应的类别是长椅
      14: bird            # 编号14对应的类别是鸟
      15: cat             # 编号15对应的类别是猫
      16: dog             # 编号16对应的类别是狗
      17: horse           # 编号17对应的类别是马
      
      18: sheep           # 编号18对应的类别是绵羊
      19: cow             # 编号19对应的类别是牛
      20: elephant        # 编号20对应的类别是大象
      21: bear            # 编号21对应的类别是熊
      22: zebra           # 编号22对应的类别是斑马
      23: giraffe         # 编号23对应的类别是长颈鹿
      
      24: backpack        # 编号24对应的类别是背包
      
      25: umbrella        # 编号25对应的类别是雨伞
      26: handbag         # 编号26对应的类别是手提包
      27: tie             # 编号27对应的类别是领带
      28: suitcase        # 编号28对应的类别是行李箱
      29: frisbee         # 编号29对应的类别是飞盘
      
      30: skis            # 编号30对应的类别是滑雪板
      31: snowboard       # 编号31对应的类别是单板滑雪板
      32: sports ball     # 编号32对应的类别是运动球类
      33: kite            # 编号33对应的类别是风筝
      34: baseball bat    # 编号34对应的类别是棒球棒
      35: baseball glove  # 编号35对应的类别是棒球手套
      36: skateboard      # 编号36对应的类别是滑板
      37: surfboard       # 编号37对应的类别是冲浪板
      38: tennis racket   # 编号38对应的类别是网球拍
      39: bottle          # 编号39对应的类别是瓶子
      40: wine glass      # 编号40对应的类别是酒杯
      41: cup             # 编号41对应的类别是杯子
      42: fork            # 编号42对应的类别是叉子
      
      43: knife           # 编号43对应的类别是刀
      44: spoon           # 编号44对应的类别是勺子
      45: bowl            # 编号45对应的类别是碗
      46: banana          # 编号46对应的类别是香蕉
      47: apple           # 编号47对应的类别是苹果
      48: sandwich        # 编号48对应的类别是三明治
      
      49: orange          # 编号49对应的类别是橙子
      50: broccoli        # 编号50对应的类别是西兰花
      51: carrot          # 编号51对应的类别是胡萝卜
      52: hot dog         # 编号52对应的类别是热狗
      
      53: pizza           # 编号53对应的类别是披萨
      54: donut           # 编号54对应的类别是甜甜圈
      
      55: cake            # 编号55对应的类别是蛋糕
      56: chair           # 编号56对应的类别是椅子
      57: couch           # 编号57对应的类别是沙发
      58: potted plant    # 编号58对应的类别是盆栽植物
      
      59: bed             # 编号59对应的类别是床
      60: dining table    # 编号60对应的类别是餐桌
      61: toilet          # 编号61对应的类别是马桶
      62: tv              # 编号62对应的类别是电视
      63: laptop          # 编号63对应的类别是笔记本电脑
      64: mouse           # 编号64对应的类别是鼠标
      65: remote          # 编号65对应的类别是遥控器
      66: keyboard        # 编号66对应的类别是键盘
      67: cell phone      # 编号67对应的类别是手机
      68: microwave       # 编号68对应的类别是微波炉
      69: oven            # 编号69对应的类别是烤箱
      70: toaster         # 编号70对应的类别是烤面包机
      71: sink            # 编号71对应的类别是水槽
      72: refrigerator    # 编号72对应的类别是冰箱
      73: book            # 编号73对应的类别是书
      
      74: clock           # 编号74对应的类别是时钟
      75: vase            # 编号75对应的类别是花瓶
      76: scissors        # 编号76对应的类别是剪刀
      77: teddy bear      # 编号77对应的类别是泰迪熊
      
      78: hair drier      # 编号78对应的类别是吹风机
      79: toothbrush      # 编号79对应的类别是牙刷
    
    # 数据集的下载链接,通过该链接可获取整个数据集压缩包
    download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip
    

coco8-multispectral.yaml

# 数据集在文件系统中的根路径,其他路径配置以此为基础。
# 后续的训练集、验证集路径等都是相对于此路径进行设置。
path:../datasets/coco8-multispectral

# 训练集图像所在的相对路径,相对于path指定的根路径。
# 这里存放用于模型训练的多光谱图像数据。
train: images/train

# 验证集图像所在的相对路径,同样相对于path根路径。
# 在模型训练过程中,使用这些图像来验证模型的性能表现。
val: images/val

# 测试集图像所在的相对路径,当前为空。
# 可能后续会补充测试集路径,用于最终评估训练好的模型性能。
test:


# 定义多光谱图像的通道数为10
# 表明数据集中的图像具有10个不同的光谱通道,
# 每个通道可能对应不同波长范围的光信息。
channels: 10

# 类别编号与实际类别名称的对应关系。
# 在模型训练和预测时,模型会根据这些编号来识别不同的物体类别。
names:
  0: person           # 编号0对应的类别是行人
  1: bicycle          # 编号1对应的类别是自行车
  2: car              # 编号2对应的类别是汽车
  3: motorcycle       # 编号3对应的类别是摩托车
  
  4: airplane         # 编号4对应的类别是飞机
  5: bus              # 编号5对应的类别是公交车
  6: train            # 编号6对应的类别是火车
  7: truck            # 编号7对应的类别是卡车
  8: boat             # 编号8对应的类别是船
  9: traffic light    # 编号9对应的类别是交通信号灯
  10: fire hydrant    # 编号10对应的类别是消防栓
  11: stop sign       # 编号11对应的类别是停车标志
  
  12: parking meter   # 编号12对应的类别是停车计时器
  
  13: bench           # 编号13对应的类别是长椅
  14: bird            # 编号14对应的类别是鸟
  15: cat             # 编号15对应的类别是猫
  16: dog             # 编号16对应的类别是狗
  17: horse           # 编号17对应的类别是马
  18: sheep           # 编号18对应的类别是绵羊
  19: cow             # 编号19对应的类别是牛
  20: elephant        # 编号20对应的类别是大象
  21: bear            # 编号21对应的类别是熊
  22: zebra           # 编号22对应的类别是斑马
  23: giraffe         # 编号23对应的类别是长颈鹿
  24: backpack        # 编号24对应的类别是背包
  25: umbrella        # 编号25对应的类别是雨伞
  26: handbag         # 编号26对应的类别是手提包
  
  27: tie             # 编号27对应的类别是领带
  
  28: suitcase        # 编号28对应的类别是行李箱
  
  29: frisbee         # 编号29对应的类别是飞盘
  30: skis            # 编号30对应的类别是滑雪板
  
  31: snowboard       # 编号31对应的类别是单板滑雪板
  32: sports ball     # 编号32对应的类别是运动球类
  33: kite            # 编号33对应的类别是风筝
  34: baseball bat    # 编号34对应的类别是棒球棒
  35: baseball glove  # 编号35对应的类别是棒球手套
  36: skateboard      # 编号36对应的类别是滑板
  37: surfboard       # 编号37对应的类别是冲浪板
  38: tennis racket   # 编号38对应的类别是网球拍
  
  39: bottle          # 编号39对应的类别是瓶子
  40: wine glass      # 编号40对应的类别是酒杯
  
  41: cup             # 编号41对应的类别是杯子
  42: fork            # 编号42对应的类别是叉子
  43: knife           # 编号43对应的类别是刀
  44: spoon           # 编号44对应的类别是勺子
  
  45: bowl            # 编号45对应的类别是碗
  
  46: banana          # 编号46对应的类别是香蕉
  47: apple           # 编号47对应的类别是苹果
  48: sandwich        # 编号48对应的类别是三明治
  49: orange          # 编号49对应的类别是橙子
  50: broccoli        # 编号50对应的类别是西兰花
  51: carrot          # 编号51对应的类别是胡萝卜
  52: hot dog         # 编号52对应的类别是热狗
  53: pizza           # 编号53对应的类别是披萨
  54: donut           # 编号54对应的类别是甜甜圈
  55: cake            # 编号55对应的类别是蛋糕
  56: chair           # 编号56对应的类别是椅子
  57: couch           # 编号57对应的类别是沙发
  
  58: potted plant    # 编号58对应的类别是盆栽植物
  
  59: bed             # 编号59对应的类别是床
  60: dining table    # 编号60对应的类别是餐桌
  61: toilet          # 编号61对应的类别是马桶
  62: tv              # 编号62对应的类别是电视
  63: laptop          # 编号63对应的类别是笔记本电脑
  64: mouse           # 编号64对应的类别是鼠标
  65: remote          # 编号65对应的类别是遥控器
  66: keyboard        # 编号66对应的类别是键盘
  67: cell phone      # 编号67对应的类别是手机
  68: microwave       # 编号68对应的类别是微波炉
  69: oven            # 编号69对应的类别是烤箱
  70: toaster         # 编号70对应的类别是烤面包机
  
  71: sink            # 编号71对应的类别是水槽
  72: refrigerator    # 编号72对应的类别是冰箱
  
  73: book            # 编号73对应的类别是书
  74: clock           # 编号74对应的类别是时钟
  75: vase            # 编号75对应的类别是花瓶
  76: scissors        # 编号76对应的类别是剪刀
  
  77: teddy bear      # 编号77对应的类别是泰迪熊
  78: hair drier      # 编号78对应的类别是吹风机
  
  79: toothbrush      # 编号79对应的类别是牙刷
# 数据集的下载链接,通过该链接可获取整个多光谱数据集压缩包。
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-multispectral.zip

coco8-pose.yaml

  • 关键点的形状配置
    # 数据集在文件系统中的根路径,后续train、val、test等路径均基于此路径
    path: ../datasets/coco8-pose
    
    # 训练集图像所在的相对路径,相对于path指定的根路径,这些图像用于训练模型
    train: images/train
    
    # 验证集图像所在的相对路径,相对于path指定的根路径,用于在训练过程中验证模型的性能
    val: images/val
    
    # 测试集图像所在的相对路径,此处留空,可能表示尚未明确指定测试集路径,
    # 或测试集与验证集共用,也可能需要在后续根据具体情况手动设置
    test:
    
    # 关键点的形状配置,[17, 3] 表示数据集中人体关键点有17个,
    # 每个关键点用包含3个元素的数组来描述(通常可能是x坐标、y坐标和置信度)
    kpt_shape: [17, 3] 
    
    # 关键点翻转索引配置,用于在进行图像翻转操作时,
    # 确定对应关键点的映射关系。例如,索引0的关键点在翻转后对应索引0的关键点,
    # 索引2的关键点在翻转后对应索引1的关键点,以此类推。这对于数据增强等操作很有用。
    flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
    
    # 类别编号与实际类别名称的对应关系,在模型训练和预测时,
    # 模型会根据这些编号识别不同的物体类别。这里只有一个类别“person”,
    # 表明该数据集主要用于人体姿态相关的任务。
    names:
      0: person
    
    # 数据集的下载链接,通过该链接可获取整个数据集压缩包
    download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
    

coco8-seg.yaml

  • 图像分割任务
    # 数据集在文件系统中的根路径,后续的训练集、验证集和测试集路径都基于此路径
    path: ../datasets/coco8-seg
    
    # 训练集图像的存放路径,相对于根路径,这些图像用于训练图像分割模型
    train: images/train
    
    # 验证集图像的存放路径,相对于根路径,用于在训练过程中验证模型的性能,
    # 查看模型在这些数据上的分割效果,以便调整模型参数
    val: images/val
    
    # 测试集图像的存放路径,此处未设置,可能后续根据实际情况补充,
    # 用于最终评估训练好的模型在未知数据上的分割表现
    test: 
    
    # 类别编号与类别名称的对应关系,用于在图像分割任务中识别不同的物体类别
    names:
      0: person           # 编号0对应的物体类别是行人
      1: bicycle          # 编号1对应的物体类别是自行车
      2: car              # 编号2对应的物体类别是汽车
      3: motorcycle       # 编号3对应的物体类别是摩托车
      4: airplane         # 编号4对应的物体类别是飞机
      5: bus              # 编号5对应的物体类别是公交车
      6: train            # 编号6对应的物体类别是火车
      7: truck            # 编号7对应的物体类别是卡车
      8: boat             # 编号8对应的物体类别是船
      9: traffic light    # 编号9对应的物体类别是交通信号灯
      10: fire hydrant    # 编号10对应的物体类别是消防栓
      11: stop sign       # 编号11对应的物体类别是停车标志
      12: parking meter   # 编号12对应的物体类别是停车计时器
      
      13: bench           # 编号13对应的物体类别是长椅
      14: bird            # 编号14对应的物体类别是鸟
      15: cat             # 编号15对应的物体类别是猫
      16: dog             # 编号16对应的物体类别是狗
      17: horse           # 编号17对应的物体类别是马
      18: sheep           # 编号18对应的物体类别是绵羊
      19: cow             # 编号19对应的物体类别是牛
      20: elephant        # 编号20对应的物体类别是大象
      21: bear            # 编号21对应的物体类别是熊
      22: zebra           # 编号22对应的物体类别是斑马
      23: giraffe         # 编号23对应的物体类别是长颈鹿
      24: backpack        # 编号24对应的物体类别是背包
      25: umbrella        # 编号25对应的物体类别是雨伞
      26: handbag         # 编号26对应的物体类别是手提包
      27: tie             # 编号27对应的物体类别是领带
      28: suitcase        # 编号28对应的物体类别是行李箱
      29: frisbee         # 编号29对应的物体类别是飞盘
      30: skis            # 编号30对应的物体类别是滑雪板
      31: snowboard       # 编号31对应的物体类别是单板滑雪板
      32: sports ball     # 编号32对应的物体类别是运动球类
      33: kite            # 编号33对应的物体类别是风筝
      34: baseball bat    # 编号34对应的物体类别是棒球棒
      35: baseball glove  # 编号35对应的物体类别是棒球手套
      36: skateboard      # 编号36对应的物体类别是滑板
      37: surfboard       # 编号37对应的物体类别是冲浪板
      38: tennis racket   # 编号38对应的物体类别是网球拍
      39: bottle          # 编号39对应的物体类别是瓶子
      40: wine glass      # 编号40对应的物体类别是酒杯
      41: cup             # 编号41对应的物体类别是杯子
      42: fork            # 编号42对应的物体类别是叉子
      43: knife           # 编号43对应的物体类别是刀
      44: spoon           # 编号44对应的物体类别是勺子
      45: bowl            # 编号45对应的物体类别是碗
      46: banana          # 编号46对应的物体类别是香蕉
      47: apple           # 编号47对应的物体类别是苹果
      48: sandwich        # 编号48对应的物体类别是三明治
      49: orange          # 编号49对应的物体类别是橙子
      50: broccoli        # 编号50对应的物体类别是西兰花
      51: carrot          # 编号51对应的物体类别是胡萝卜
      52: hot dog         # 编号52对应的物体类别是热狗
      53: pizza           # 编号53对应的物体类别是披萨
      54: donut           # 编号54对应的物体类别是甜甜圈
      55: cake            # 编号55对应的物体类别是蛋糕
      56: chair           # 编号56对应的物体类别是椅子
      57: couch           # 编号57对应的物体类别是沙发
      58: potted plant    # 编号58对应的物体类别是盆栽植物
      59: bed             # 编号59对应的物体类别是床
      60: dining table    # 编号60对应的物体类别是餐桌
      61: toilet          # 编号61对应的物体类别是马桶
      62: tv              # 编号62对应的物体类别是电视
      63: laptop          # 编号63对应的物体类别是笔记本电脑
      64: mouse           # 编号64对应的物体类别是鼠标
      65: remote          # 编号65对应的物体类别是遥控器
      66: keyboard        # 编号66对应的物体类别是键盘
      67: cell phone      # 编号67对应的物体类别是手机
      68: microwave       # 编号68对应的物体类别是微波炉
      69: oven            # 编号69对应的物体类别是烤箱
      70: toaster         # 编号70对应的物体类别是烤面包机
      71: sink            # 编号71对应的物体类别是水槽
      72: refrigerator    # 编号72对应的物体类别是冰箱
      73: book            # 编号73对应的物体类别是书
      74: clock           # 编号74对应的物体类别是时钟
      75: vase            # 编号75对应的物体类别是花瓶
      76: scissors        # 编号76对应的物体类别是剪刀
      
      77: teddy bear      # 编号77对应的物体类别是泰迪熊
      78: hair drier      # 编号78对应的物体类别是吹风机
      79: toothbrush      # 编号79对应的物体类别是牙刷
    
    # 数据集的下载链接,通过该链接可获取整个用于图像分割任务的数据集压缩包
    # 若遇到“当前不支持该文件类型,请尝试其他文件”的报错,
    # 可能是下载工具或系统不支持该文件的下载或解压,需检查相关设置或更换工具
    download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
    

  • coco128.yaml、coco128-seg.yaml 文件内容类似,不再赘述

coco-pose.yaml

  • # 数据集在文件系统中的根路径,后续train、val、test等文件路径均基于此路径
    path: ../datasets/coco-pose
    
    # 训练集对应的文件,这里是一个文本文件(train2017.txt),
    # 该文件可能包含了训练集图像的相关信息(如文件名、标注信息的索引等)
    train: train2017.txt
    
    # 验证集对应的文件,val2017.txt文件用于存储验证集图像的相关信息,
    # 用于在模型训练过程中验证模型的性能
    val: val2017.txt
    
    # 测试集对应的文件,test-dev2017.txt文件存储测试集图像的相关信息,
    # 用于最终评估训练好的模型的性能
    test: test-dev2017.txt
    
    # 关键点的形状配置,[17, 3] 表示数据集中人体关键点有17个,
    # 每个关键点用包含3个元素的数组来描述(通常是x坐标、y坐标和关键点的可见性标识)
    kpt_shape: [17, 3] 
    
    # 关键点翻转索引配置,用于在进行图像翻转操作时,
    # 确定对应关键点的映射关系。例如,索引0的关键点在翻转后对应索引0的关键点,
    # 索引2的关键点在翻转后对应索引1的关键点,以此类推。这对于数据增强等操作很有用。
    flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
    
    # 类别编号与实际类别名称的对应关系,在模型训练和预测时,
    # 模型会根据这些编号识别不同的物体类别。这里只有一个类别“person”,
    # 表明该数据集主要用于人体姿态相关的任务。
    names:
      0: person
    
    # 数据集的下载相关代码
    download: |
      # 从pathlib模块导入Path类,用于处理文件路径
      from pathlib import Path
      
      # 从ultralytics.utils.downloads模块导入download函数,用于下载文件
      from ultralytics.utils.downloads import download
    
      # 获取数据集的根目录
      dir = Path(yaml["path"])  
      # 定义基础下载链接
      url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
      # 定义标注数据的下载链接列表,这里是包含姿态标注的COCO 2017标注数据压缩包
      urls = [f"{url}coco2017labels-pose.zip"]
      # 调用download函数下载标注数据压缩包到数据集根目录的父目录
      download(urls, dir=dir.parent)
    
      # 定义图像数据的下载链接列表
      urls = [
          "http://images.cocodataset.org/zips/train2017.zip",  # 训练集图像压缩包,约19G,包含118k张图像
          "http://images.cocodataset.org/zips/val2017.zip",  # 验证集图像压缩包,约1G,包含5k张图像
          "http://images.cocodataset.org/zips/test2017.zip",  # 测试集图像压缩包,约7G,包含41k张图像(可选)
      ]
      
      # 调用download函数下载图像数据压缩包到数据集根目录下的images子目录,使用3个线程进行下载
      download(urls, dir=dir / "images", threads=3)
    
### YOLOv11-BiFPN 模型配置文件详情 对于YOLOv11-BiFPN模型而言,其配置文件通常遵循特定结构来定义网络架构、训练参数和其他设置。虽然具体版本的`yolov11-bifpn.yaml`未直接提及于现有资料中[^1],可以推测该配置文件会继承自更广泛的YOLO系列设计原则。 #### 配置文件的主要部分可能包括: - **超参设定**:如学习(`lr0`)、动量(`momentum`)等优化器参数;权重衰减系数(`weight_decay`)用于正则化。 - **数据集路径**:指定训练和验证图像及其标签的位置,类似于如下形式: ```yaml path: ../datasets/coco/ train: images/train2017/ val: images/val2017/ ``` - **类别数量**:指明目标检测任务中的分类数目,例如COCO数据集中有80类对象。 - **骨干网(Backbone)**:BiFPN(双向特征金字塔网络)作为增强版的颈部组件被集成进来,在此之前可能会采用某种基础卷积层或预训练模型作为输入处理单元。考虑到性能因素,可以选择像VanillaNet这样的轻量化backbone以提升效率[^3]。 - **头部设计**:负责最终预测输出的部分,一般包含锚框生成策略以及回归与分类子任务的具体实现方式。 - **其他选项**:比如多尺度训练开关、mosaic数据增广启用状态等高级特性也可能在此处有所体现。 #### 使用方法示例 假设已经获取到了名为`yolov11_bifpn.yaml`的有效配置文档,则可以通过命令行启动训练过程,格式大致如下所示: ```bash yolo task=detect \ mode=train \ model=cfg/models/yolov11_bifpn.yaml \ data=cfg/datasets/custom_dataset.yaml \ epochs=300 \ batch=32 \ device=cuda:0 \ project=my_yolov11_experiments ``` 上述指令设置了使用GPU加速设备执行为期300轮次迭代的学习流程,并保存实验成果至指定目录内。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言析数智

创作不易,感谢客官的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值