【ECO】Efficient Convolution Operators for Tracking阅读笔记

该论文探讨了如何提高基于DCF的目标跟踪性能和速度。通过因式分解卷积算子减少模型参数,解决过拟合和计算复杂性问题。同时,提出了一种紧凑的生成样本空间模型,以降低内存和时间复杂度,增加样本多样性。此外,采用保守的模型更新策略提升鲁棒性,降低计算量。
摘要由CSDN通过智能技术生成

Abstract:


基于DCF的方法在跟踪领域有着领先优势,但是对跟踪性能的追求,使得跟踪速度和实时能力下降。复杂的模型带来大量可训练的参数,增加了过拟合的风险。这篇论文的工作解决了计算复杂度与过拟合这个主要问题,目的是同时提高性能和速度。

引进了以下创新:

(1)因式分解卷积算子,减少了模型中的参数数量

(2)训练样本集的紧凑生成模型,降低了内存和时间复杂度,能提供更好的样本多样性

(3)一种保守的模型更新策略,提升鲁棒性,减小计算量

 

1. Introduction

(略)

 

1.1. Motivation

三个关键因素:

(1)model size :高维的特征图谱融合会使得表观模型参数急剧增加,会很容易带来过拟合,并且会增加计算放入复杂性,降低跟踪速度

(2)Training set size:先进的DCF跟踪器需要大量的训练集来进行迭代优化。然而内存容量是有限的,特别是使用高维的特征时,常用的方法是丢弃旧的样本,但会使得对最近的表观变化过拟合,从而带来模型漂移,同时也会增加计算的负担。

(3)model update:大多DCF方法采取连续的学习策略,最近的使用Siamese networks的方法不使用任何模型更新,带来了较好的跟踪效果。目前先进的DCF算法中采取的连续更新模式会对突如其来的变化过度敏感,例如:尺度变化、形变,出视野、旋转等。过度的更新策略会降低帧率,对最近的帧过拟合会使鲁棒性降低。

 

1.2. Contributions

(略,同Abstract)

 

2. Baseline Approach: C-COT

不同于其他的DCF方法,(C-COT作者)Danelljan提出了在连续空间域中学习滤波器。C-COT中有两点优势与我们的工作相关。

第一点是通过在连续空间域执行卷积,得到的多分辨率特征图的自然融合。这提供了在每一个视觉特性上可以独立的灵活选用cell的尺寸,而不再需要重新采样。第二点是,对目标预测的检测分数通过连续函数获得,可得到准确的子窗口的位置。

这里简单介绍一下C-COT的公式,C-COT基于M个训练样本集学习一个卷积滤波器,不像传统的DCF,每一个特征层有独立的解。特征图谱通过引入一个插值模型,转换到连续空间域,由运算符执行:

此处

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值