hdu1159 LCS最长公共子序列

题目大意:求两个字符串a,b的最大公共子序列,子序列定义为可不连续但顺序不乱

思路:动态规划,dp[i][j]表示a[0……i-1]和b[0……j-1]的LCS,枚举最后一个字母即a[i-1]和b[j-1],如果a[i-1] == b[j-1],则dp[i][j] = dp[i-1][j-1] + 1; 如果不相等,则dp[i][j] = max(dp[i-1][j],dp[i][j-1])...不过这样空间复杂度有点高,一维dp 可以降低空间复杂度,以后学习!


#include <cstdio>
#include <string>
#include <cstring>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <iostream>
#include <iomanip>

using namespace std;
#define maxn 1005
#define MOD 1000000007
#define mem(a) memset(a , 0 , sizeof(a))
#define LL __int64
#define INF 999999999
int n ;
int dp[maxn][maxn];
char a[maxn] , b[maxn];

int main()
{
    int n;
    int k = 0;
    while(scanf("%s %s" , a , b) != EOF)
    {
        int len1 = strlen(a);
        int len2 = strlen(b);
       // mem(dp);
       for(int i = 0 ; i < len1 ; i ++) dp[i][0] = 0;
       for(int i = 0 ; i < len2 ; i ++) dp[0][i] = 0;
        for(int i = 1 ; i <= len1 ; i ++)
        {
            for(int j = 1 ; j <= len2 ; j ++)
            {
                if(a[i-1] == b[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else if(dp[i-1][j] >= dp[i][j-1]) dp[i][j] = dp[i-1][j];
                else dp[i][j] = dp[i][j-1];
            }
        }
        printf("%d\n" , dp[len1][len2]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值