YoloV1、YoloV2和YoloV3实现细节和区别

YoloV1:对比R-CNN

出处:

《You Only Look Once: Unified, Real-Time Object Detection》

背景:

RCNN存在region proposal 过程,Selective Search每张图花费1~2不能做到real-time

Proposals太多会出现很多假阳例

思想:

提出一个简单的卷积神经网络同时预测边框和预测类别

使用整个图的特征来预测来减少误差

不需要预处理和后处理

结构:

24层卷积+2层FC,3*3卷积下采样,1*1卷积减少特征空间

Our system divides the input image into a 7* 7 grid. If the center of an object falls into a grid cell, that grid cell is responsible for detecting that object. Each grid cell predicts a bounding box and class probabilities associated with that bounding box

输入是448*448*3,输出是7*7*30, 7*7对应每个grid,而20代表20个类的概率和10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值