理解梯度下降

梯度下降

sigmod 函数:
σ = 1 1 + e − x \sigma = \tfrac{1}{1+e^{-x}} σ=1+ex1
sigmod 的导数为: σ ′ = σ ( x ) ( 1 − σ ( x ) ) \sigma^{'} = \sigma(x)(1-\sigma(x)) σ=σ(x)(1σ(x))

推导该公式:
σ ′ = ∂ ∂ x 1 1 + e − x = e − x ( 1 + e − x ) − 2 = 1 1 + e − x ⋅ e − x 1 + e − x = σ ( x ) ( 1 − σ ( x ) ) \begin{aligned} \sigma^{'} &= \frac{\partial}{\partial x}\frac{1}{ 1+e^{-x}}\\&=\frac{e^{-x}}{({1+e^{-x}})^{-2}}\\&=\frac{1}{1+e^{-x}}\cdot\frac{e^{-x}}{1+e^{-x}}\\&=\sigma(x)(1-\sigma(x)) \end{aligned} σ=x1+ex1=(1+ex)2ex=1+ex11+exex=σ(x)(1σ(x))
sigmoid

sigmoid 小结

优点
  • sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。
  • (0, 1) 的输出还可以被表示作概率,或用于输入的归一化,代表性的如Sigmoid交叉熵损失函数。
  • sigmoid函数连续,光滑,严格单调,以(0,0.5)中心对称,是一个非常良好的阈值函数。
  • 当x趋近负无穷时,y趋近于0;趋近于正无穷时,y趋近于1;x=0时,y=0.5。当然,在x超出[-6,6]的范围后,函数值基本上没有变化,值非常接近,在应用中一般不考虑。
  • Sigmoid函数的值域范围限制在(0,1)之间,我们知道[0,1]与概率值的范围是相对应的,这样sigmoid函数就能与一个概率分布联系起来了。
缺点
  • 最明显的就是饱和性。其两侧导数逐渐趋近于0 具有这种性质的称为软饱和激活函数。由于在后向传递过程中,sigmoid向下传导的梯度包含了一个 f′(x)因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,f′(x) 就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。
  • sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

误差公式

如果有m个样本点, 标记为 x ( 1 ) , x ( 2 ) , . . . , x ( m ) x^{(1)}, x^{(2)}, ..., x^{(m)} x(1),x(2),...,x(m),

误差公式为:E = − 1 m ∑ i = 1 m ( y ( i ) l n ( y ^ ( i ) ) + ( 1 − y ( i ) ) l n ( 1 − y ^ ( i ) ) ) -\frac{1}{m}\sum_{i=1}^m\left(y^{(i)}ln(\hat y^{(i)}) + (1-y^{(i)})ln(1-\hat y^{(i)}) \right) m1i=1m(y(i)ln(y^(i))+(1y(i))ln(1y^(i)))

预测函数: y ^ ( i ) = σ ( W x ( i ) + b ) \hat y^{(i)} = \sigma(Wx^{(i)} + b) y^(i)=σ(Wx(i)+b)

误差的偏导数

我们的目标是计算E ,在单个样本点x时的梯度即偏导数, 其中x包含n个特征
即x=( x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn)

∇ E = ( ∂ ∂ w 1 E , . . . , ∂ ∂ w n E , ∂ ∂ b E ) \nabla E =\left(\frac{ \partial}{\partial w_1}E,... ,\frac{ \partial}{\partial w_n}E, \frac{ \partial}{\partial b}E \right) E=(w1E,...,wnE,bE)

先计算 ∂ ∂ w j y ^ \frac{ \partial }{\partial w_j}\hat y wjy^
∂ ∂ w j y ^ = σ ( W x + b ) ( 1 − σ ( W x + b ) ) ⋅ ∂ ∂ w j ( W x + b ) = y ^ ( 1 − y ^ ) ⋅ ∂ ∂ w j ( W x + b ) = y ^ ( 1 − y ^ ) ⋅ ∂ ∂ w j ( w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b ) = y ^ ( 1 − y ^ ) ⋅ x j \begin{aligned} \frac{ \partial }{\partial w_j}\hat y &=\sigma(Wx+b)(1-\sigma(Wx+b))\cdot \frac{\partial}{\partial w_j}(Wx+b)\\ &=\hat y(1-\hat y)\cdot \frac{\partial}{\partial w_j}(Wx+b)\\ &=\hat y(1-\hat y)\cdot \frac{\partial}{\partial w_j}(w_1x_1+ w_2x_2+ \cdots + w_nx_n +b)\\ &=\hat y(1-\hat y)\cdot x_j \end{aligned} wjy^=σ(Wx+b)(1σ(Wx+b))wj(Wx+b)=y^(1y^)wj(Wx+b)=y^(1y^)wj(w1x1+w2x2++wnxn+b)=y^(1y^)xj
现在计算 ∂ ∂ w j E \frac{\partial}{\partial w_j}E wjE

∂ ∂ w j E = ∂ ∂ w j [ − y l n ( y ^ ) − ( 1 − y ) l n ( 1 − y ^ ) ] = − y ∂ ∂ w j ( l n y ^ ) − ( 1 − y ) ∂ ∂ j l n ( 1 − y ^ ) = − y ⋅ 1 y ^ ⋅ ∂ ∂ w j y ^ − ( 1 − y ) ⋅ 1 1 − y ^ ⋅ ∂ ∂ w j ( 1 − y ^ ) = − y ⋅ 1 y ^ ⋅ y ^ ( 1 − y ^ ) ⋅ x j − ( 1 − y ) ⋅ 1 1 − y ^ ⋅ y ^ ⋅ ( 1 − y ^ ) ⋅ ( − 1 ) ⋅ x j = − y ( 1 − y ^ ) ⋅ x j + ( 1 − y ) y ^ ⋅ x j = − ( y − y ^ ) x j \begin{aligned} \frac{\partial}{\partial w_j}E &=\frac{ \partial }{\partial w_j}\left [-yln(\hat y) - (1-y)ln(1-\hat y) \right]\\&=-y\frac{\partial}{\partial w_j}(ln\hat y) - (1-y)\frac{\partial}{\partial j}ln(1-\hat y)\\&=-y\cdot\frac{1}{\hat y}\cdot\frac{\partial}{\partial w_j}\hat y - (1-y)\cdot\frac{1}{1-\hat y}\cdot\frac{\partial}{\partial w_j}(1-\hat y)\\&=-y\cdot\frac{1}{\hat y}\cdot\hat y(1-\hat y)\cdot x_j - (1-y)\cdot\frac{1}{1-\hat y}\cdot\hat y\cdot(1-\hat y)\cdot(-1)\cdot x_j\\&= -y(1-\hat y)\cdot x_j + (1-y)\hat y \cdot x_j \\&= -(y - \hat y)x_j \end{aligned} wjE=wj[yln(y^)(1y)ln(1y^)]=ywj(lny^)(1y)jln(1y^)=yy^1wjy^(1y)1y^1wj(1y^)=yy^1y^(1y^)xj(1y)1y^1y^(1y^)(1)xj=y(1y^)xj+(1y)y^xj=(yy^)xj

类似地E对b求偏导的公式为: ∂ ∂ b E = − ( y − y ^ ) \frac{\partial}{\partial b}E = -(y-\hat y) bE=(yy^)

总结为: ∇ E = − ( y − y ^ ) ( x 1 , x 2 , ⋯   , x n , 1 ) \nabla E = -(y-\hat y)(x_1, x_2, \cdots, x_n, 1) E=(yy^)(x1,x2,,xn,1)
梯度实际上是标量乘以点的坐标, 标量就是标签与预测之间的差别, 这意味着,
如果标签与预测接近(即点分类正确), 梯度将很小。

梯度下降步骤

减去误差函数的梯度与学习速率的乘积,按如下方式更新:
w i ′ ← w i − α [ − ( y − y ^ ) x i ] w_i^{'} \leftarrow w_i - \alpha[-(y- \hat y)x_i] wiwiα[(yy^)xi]

简写为: w i ′ ← w i + α ( y − y ^ ) x i w_i^{'} \leftarrow w_i + \alpha(y- \hat y)x_i wiwi+α(yy^)xi ,
类似地 b ′ ← b + α ( y − y ^ ) b^{'} \leftarrow b + \alpha(y- \hat y) bb+α(yy^)

注意: 我们取的误差的平均值,所以要添加 1 m ⋅ α \frac{1}{m}\cdot\alpha m1α
而不是 α \alpha α,由于 α \alpha α为常量,为了简化起见,我用 α \alpha α
来表示学习速率 1 m ⋅ α \frac{1}{m}\cdot\alpha m1α

点击原始笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值