4.1 多层感知机
在第 3 节中,我们介绍了 softmax 回归,并实现了其从零开始的实现和基于高级 API 的实现,训练了分类器来识别 10 类服装图像。在此过程中,我们学习了如何处理数据、将输出转换为概率分布、并应用适当的损失函数来最小化损失。现在,我们将深入探索深度神经网络,这是本书的核心模型之一。
4.1.1 隐藏层
在 3.1.1 节中,我们介绍了仿射变换,它是一种带有偏置项的线性变换。回想一下 softmax 回归的模型架构,它通过单个仿射变换将输入直接映射到输出,再进行 softmax 操作。如果标签确实与输入相关,这种方法是足够的。但仿射变换的线性假设过于强烈。
线性模型的局限性
线性模型假设输入特征与输出之间的关系是单调的,例如收入增加会增加偿还贷款的概率,但这种关系不是线性的。处理这个问题的一种方法是对数据进行预处理,比如使用收入的对数作为特征。
然而,对于某些问题,线性模型的假设会完全失败。例如,分类图像中的猫和狗时,某个像素的强度并不能单独决定类别。图像的像素需要依赖上下文,像素之间的复杂交互使得线性模型难以处理。
引入隐藏层
为了解决线性模型的局限性,我们可以在网络中加入隐藏层,使其能够处理更复杂的函数关系。最简单的方法是堆叠多个全连接层,每一层的输出作为下一层的输入,最终生成输出。这种架构称为多层感知机(multilayer perceptron,MLP)。
下图展示了一个单隐藏层的多层感知机:
图4.1.1: 一个单隐藏层的多层感知机,具有5个隐藏单元
这个 MLP 有 4 个输入,3 个输出,隐藏层有 5 个隐藏单元。输入层不涉及计算,网络的计算只发生在隐藏层和输出层。这种网络共有 2 层,每层都是全连接的,每个输入都会影响隐藏层中的每个神经元,而隐藏层中的每个神经元又会影响输出层中的每个神经元。
然而,如 3.4.3 节所述,具有全连接层的 MLP 可能有大量参数,这会带来高计算成本。即使不改变输入或输出的大小,也需要在参数节约和模型效果之间进行权衡。
4.2 从线性到非线性
与之前的章节类似,我们使用矩阵 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} X∈Rn×d 表示包含 n n n 个样本的小批量数据,其中每个样本有 d d d 个输入特征。对于具有 h h h 个隐藏单元的单隐藏层多层感知机(MLP),隐藏层的输出可以用 H ∈ R n × h \mathbf{H} \in \mathbb{R}^{n \times h} H∈Rn×h 表示,称为隐藏表示(hidden representations)。隐藏层的权重和偏置分别为 W ( 1 ) ∈ R d × h \mathbf{W}^{(1)} \in \mathbb{R}^{d \times h} W