[机器学习]UC Irvine 数据集网的adults预测收入算法错误率

来源:http://archive.ics.uci.edu/

翻译原文:http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names

根据15个特征预测一个人是否拥有50K以上的年收入,比较各个算法下的错误率,先给出结果

算法名称     错误率

|    Algorithm               Error
| -- ----------------        -----
| 1  C4.5                    15.54
| 2  C4.5-auto               14.46
| 3  C4.5 rules              14.94
| 4  Voted ID3 (0.6)         15.64
| 5  Voted ID3 (0.8)         16.47
| 6  T2                      16.84
| 7  1R                      19.54
| 8  NBTree                  14.10
| 9  CN2                     16.00
| 10 HOODG                   14.82
| 11 FSS Naive Bayes         14.05
| 12 IDTM (Decision table)   14.46
| 13 Naive-Bayes             16.12
| 14 Nearest-neighbor (1)    21.42
| 15 Nearest-neighbor (3)    20.35
| 16 OC1                     15.04
| 17 Pebls                   Crashed.  Unknown why (bounds WERE increased)
可以看到朴素贝叶斯还是很坚挺的

数据优化处理后,以50K为阈值将收入离散到两个区域内,由MLC++  GenCVFiles生成数据并测试,数据实例有45K,训练样本30K,测试个数15K

特征有 年龄 工作环境 受教育 受教育时长 婚姻状况 职业性质 家庭成员 种族肤色 性别 出生地

 数据来源是非体制内的,年龄在16-50岁的公民,控制因素有种族,年龄,性别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值