学习笔记|Pytorch使用教程04(autograd与逻辑回归)

39 篇文章 24 订阅
本文深入解析PyTorch中的自动求导机制,包括torch.autograd的功能及用法,通过实例演示梯度求导过程。同时,详细介绍了逻辑回归模型,从原理到实践,展示了如何使用PyTorch实现逻辑回归并进行模型训练。
摘要由CSDN通过智能技术生成

学习笔记|Pytorch使用教程04

本学习笔记主要摘自“深度之眼”,做一个总结,方便查阅。
使用Pytorch版本为1.2。

  • torch.autograd
  • 逻辑回归

一.autograd——自动求导系统

torch.autograd.backward()
在这里插入图片描述
功能:自动求取梯度

  • tensors:用于求导的张量,如loss
  • grad_tensors:多梯度权重
  • retain_graph:保存计算图
  • create_graph:创建导数计算图,用于高阶求导

计算图与梯度求导
图1 计算图
y = ( x + w ) ∗ ( w + 1 ) y=(x+w) *(w+1) y=(x+w)(w+1)
a = x + w b = w + 1 a=x+w \quad b=w+1 a=x+wb=w+1
y = a ∗ b y=a * b y=ab
y对w求导可得:
∂ y ∂ w = ∂ y ∂ a ∂ a ∂ w + ∂ y ∂ b ∂ b ∂ w = b + 1 + a ∗ 1 = b + a = ( w + 1 ) + ( x + w ) = 2 ∗ w + x + 1 = 2 ∗ 1 + 2 + 1 = 5 \begin{aligned} \frac{\partial y}{\partial w} &=\frac{\partial y}{\partial a} \frac{\partial a}{\partial w}+\frac{\partial y}{\partial b} \frac{\partial b}{\partial w} \\ &=b+1+a * 1 \\ &=b+a \\ &=(w+1)+(x+w) \\ &=2 * w+x+1 \\ &=2 * 1+2+1=5 \end{aligned} wy=aywa+bywb=b+1+a1=b+a=(w+1)+(x+w)=2w+x+1=21+2+1=5
retain_graph:
retain_graph = true ,能把计算图保存下来,才能进行第二次反向传播(梯度会累加)。
测试代码:

# ====================================== retain_graph ==============================================
flag = True
#flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    y.backward(retain_graph=True)
    print(w.grad)
    y.backward()
    print(w.grad)

输出:

tensor([5.])
tensor([10.])

grad_tensors
grad_tensors是可以设置多个梯度的权重。
测试代码:

# ====================================== grad_tensors ==============================================
flag = True
# flag = False
if flag:
    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)     # retain_grad()
    b = torch.add(w, 1)

    y0 = torch.mul(a, b)    # y0 = (x+w) * (w+1)
    y1 = torch.add(a, b)    # y1 = (x+w) + (w+1)    dy1/dw = 2

    loss = torch.cat([y0, y1], dim=0)       # [y0, y1]
    grad_tensors = torch.tensor([1., 2.])

    loss.backward(gradient=grad_tensors)    # gradient 传入 torch.autograd.backward()中的grad_tensors

    print(w.grad)

输出

tensor([9.]) #5*1 + 2*2

torch.autograd.grad()
在这里插入图片描述
功能:求取梯度

  • outputs:用于求导的张量,如loss
  • inputs:需要梯度的张量
  • create_graph:创建导数的计算图,用于高阶求导
  • retain_graph:保存计算图
  • grad_outputs:多梯度权重

测试代码:
只有创建了导数的计算图,才能用于高阶求导

# ====================================== autograd.gard ==============================================
flag = True
# flag = False
if flag:

    x = torch.tensor([3.], requires_grad=True)
    y = torch.pow(x, 2)     # y = x**2

    grad_1 = torch.autograd.grad(y, x, create_graph=True)   # grad_1 = dy/dx = 2x = 2 * 3 = 6
    print(grad_1)

    grad_2 = torch.autograd.grad(grad_1[0], x)              # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
    print(grad_2)

输出:

(tensor([6.], grad_fn=<MulBackward0>),)
(tensor([2.]),)

autograd小贴士:

  • 梯度不自动清零
  • 依赖于叶子结点的结点,requires_grad默认位True
  • 叶子结点不可执行in-place

对于“梯度不自动清零”,测试代码:
如果梯度不清零,梯度会进行累加。要清零就加上:w.grad.zero_()

# ====================================== tips: 1 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    for i in range(4):
        a = torch.add(w, x)
        b = torch.add(w, 1)
        y = torch.mul(a, b)

        y.backward()
        print(w.grad)
        #w.grad.zero_()

输出:

tensor([5.])
tensor([10.])
tensor([15.])
tensor([20.])

对于“依赖于叶子结点的结点,requires_grad默认位True”,关于这个的理解参考上述的“计算图”,测试代码:
比如:x的梯度是依赖与a的梯度,a的梯度又依赖与y的梯度。

# ====================================== tips: 2 ==============================================
flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    print(a.requires_grad, b.requires_grad, y.requires_grad)

输出:

True True True

对于“叶子结点不可执行in-place(原地操作)”,测试代码:

flag = True
# flag = False
if flag:

    w = torch.tensor([1.], requires_grad=True)
    x = torch.tensor([2.], requires_grad=True)

    a = torch.add(w, x)
    b = torch.add(w, 1)
    y = torch.mul(a, b)

    w.add_(1)

    y.backward()

执行上述代码会报错: a leaf Variable that requires grad has been used in an in-place operation.
下面理解in-place操作。

# ====================================== tips: 3 ==============================================
flag = True
# flag = False
if flag:

    a = torch.ones((1, ))
    print(id(a), a)

    a = a + torch.ones((1, ))
    print(id(a), a)

    # a += torch.ones((1, ))
    # print(id(a), a)

输出:

2175013002280 tensor([1.])
2175013003080 tensor([2.])

发现,a的内存地址发生了变化。这是因为运算:a = a + torch.ones((1, ))开辟了新的内存地址,也就是这个不是in-place操作。如果使用a += torch.ones((1, )),则输出:

2175012960120 tensor([1.])
2175012960120 tensor([2.])

内存地址没有发生变化,这个就是in-place操作。
为什么叶子结点不能不能使用in-place操作:
参考上述计算图,以变量w为例。前向传播的时候,会记录w的地址,地址中会保存w的数据。反向传播的时候,会根据w的地址,读取w的数据,进行计算梯度。如果在反向传播之前,进行in-place操作,那么原来w的地址没有变,但是新的数据会覆盖原来的数据,那么会造成计算梯度错误。

二.逻辑回归

在这里插入图片描述
逻辑回归是线性二分类模型。
模型表达式:
y = f ( W X + b ) y=f(W X+b) y=f(WX+b)
f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
f ( x ) f(x) f(x)被称为Sigmoid函数,也称为Logistic函数
分类标准:
class = { 0 , 0.5 > y 1 , 0.5 ≤ y =\left\{\begin{array}{ll}{0,} & {0.5>y} \\ {1,} & {0.5 \leq y}\end{array}\right. ={0,1,0.5>y0.5y
在这里插入图片描述
逻辑回归又称之为对数几率回归 ln ⁡ y 1 − y \ln \frac{y}{1-y} ln1yy)。
ln ⁡ y 1 − y = W X + b \ln \frac{y}{1-y}=W X+b ln1yy=WX+b
y 1 − y = e W X + b \frac{y}{1-y}=e^{W X+b} 1yy=eWX+b
y = e W X + b − y ∗ e W X + b y=e^{W X+b}-y * e^{W X+b} y=eWX+byeWX+b
y ( 1 + e W X + b ) = e W X + b y\left(1+e^{W X+b}\right)=e^{W X+b} y(1+eWX+b)=eWX+b
y = e W X + b 1 + e W X + b = 1 1 + e − ( W X + b ) y=\frac{e^{W X+b}}{1+e^{W X+b}}=\frac{1}{1+e^{-(W X+b)}} y=1+eWX+beWX+b=1+e(WX+b)1

  • 机器学习模型训练步骤

在这里插入图片描述
测试代码:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)


# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()   # 实例化逻辑回归模型


# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()

# ============================ step 4/5 选择优化器   ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)

# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算 loss
    loss = loss_fn(y_pred.squeeze(), train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 绘图
    if iteration % 20 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算分类准确率

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 7)
        plt.ylim(-7, 7)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

输出:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值