神经网络是一种受生物神经系统启发的计算模型,它由大量的人工神经元(或节点)组成,这些神经元通过连接形成层,并且层与层之间互相连接。一个典型的神经网络架构主要包含以下几部分:
全连接神经网络 (FCNN) 的基本架构
假设我们有一个非常基础的全连接神经网络,它包含一个输入层、一个隐藏层和一个输出层。
- 输入层:有3个节点(特征),每个节点代表一个输入特征。
- 隐藏层:有4个节点,每个节点都会接收来自所有输入节点的信息,并通过激活函数处理这些信息。
- 输出层:有2个节点,表示这是一个二分类问题或两个不同类别的概率分布。
图表 1: 全连接神经网络结构
[Input Layer] -> [Hidden Layer] -> [Output Layer]
(3 nodes) (4 nodes) (2 nodes)
X1 X2 X3
\ | /
\ | /
\|/
V
H1 -- H2 -- H3 -- H4
/| | | |\
/ | | | | \
V V V V V V
O1 O2
- 每条线表示从一个节点到另一个节点的连接,即权重。
- 输入层的节点X1、X2、X3分别与隐藏层的所有节点H1至H4相连。
- 隐藏层的节点H1至H4之间没有直接连接,但它们都与输出层的节点O1和O2相连。
卷积神经网络 (CNN) 的基本架构
卷积神经网络主要用于图像识别等任务,它的特点是使用了卷积层来提取局部特征。
- 输入层:通常是一张图片,例如32x32像素的灰度图像。
- 卷积层:应用多个卷积核(滤波器)对图像进行卷积操作,以提取不同类型的特征。
- 池化层:用于降低特征图的空间尺寸,减少计算量,并保留最重要的信息。
- 全连接层:在经过多层卷积和池化后,最终将数据展平并传递给全连接层,用于分类或回归任务。
图表 2: 卷积神经网络结构
[Input Image] -> [Convolutional Layer] -> [Pooling Layer] -> ... -> [Fully Connected Layer] -> [Output Layer]
(32x32 pixels) (Apply Filters) (Downsample) (Flatten and Classify)
- 卷积层通过滑动窗口的方式对输入图像进行卷积操作,生成特征图。
- 池化层则是在每个小区域内选取最大值或平均值,从而缩小特征图的大小。
- 最终,特征图被展平成一维向量,送入全连接层进行分类或回归预测。
循环神经网络 (RNN) 的基本架构
循环神经网络适合处理序列数据,如文本或时间序列,其特点是具有内部状态,能够保存之前时刻的信息。
- 输入层:每个时间点都有一个新的输入。
- 循环层:同一组权重会在不同的时间点重复使用,允许信息在网络中流动。
- 输出层:可以是每个时间点的输出,也可以只在最后一个时间点产生输出。
图表 3: 循环神经网络结构
[Input t-1] -> [RNN Cell] -> [Output t-1] -> [RNN Cell] -> [Output t] -> [RNN Cell] -> ...
(Previous) (State) (Current) (Next) (Future)
- 在每个时间步,RNN单元接收到当前输入以及上一个时间步的状态信息。
- RNN单元处理这些信息并更新其内部状态,同时产生当前时间步的输出。
- 这种机制使得RNN能够捕捉到数据中的时序依赖关系。
自编码器 (Autoencoder) 的基本架构
自编码器是一种无监督学习方法,常用于降维和生成新的数据样本。它由编码器和解码器两部分组成。
- 编码器 (Encoder):将高维输入压缩为低维表示。
- 解码器 (Decoder):尝试从低维表示重构原始输入。
图表 4: 自编码器结构
[Input] -> [Encoder] -> [Latent Representation] -> [Decoder] -> [Reconstructed Output]
(High-Dim) (Compress) (Low-Dim) (Expand) (High-Dim)
- 编码器通过一系列全连接层逐渐减少特征的数量。
- 解码器则通过反向过程增加特征数量,直到恢复原始输入的维度。
- 通过最小化重构误差来训练整个网络,使得网络学会如何有效地压缩和解压数据。
以上图表提供了一个直观的理解方式,展示了不同类型神经网络的基本架构。每种网络类型都有其独特的结构和优势,适用于不同的应用场景。