word2vec函数参数

本文介绍了word2vec模型的参数设置,包括sentences、corpus_file、size、window等,详细阐述了每个参数的作用,如词向量维度、上下文窗口大小、训练算法等,帮助读者更好地理解和应用word2vec进行词嵌入训练。
摘要由CSDN通过智能技术生成
gensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, iter=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), max_final_vocab=None)
  • sentences (iterable of iterablesoptional) – The sentences iterable can be simply a list of lists of tokens, but for larger corpora, consider an iterable that streams the sentences directly from disk/network. See BrownCorpusText8Corpus or LineSentence in word2vec module for such examples. See also the tutorial on data streaming in Python. If you don’t supply sentences, the model is left uninitialized – use if you plan to initialize it in some other way.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值