并查集(处理复杂DFS问题):130被围绕的区域;判定合法等式;547朋友圈

模板

class UnionFind{
    vector<int>parent,rank;
    int cnt;
public:
    UnionFind(vector<vector<char>>& board){
        int m=board.size(),n=board[0].size();
        cnt=m*n;
        parent.resize(cnt);
        rank.resize(cnt,1);
        for(int i=0;i<cnt;++i)
            parent[i]=i;        
    }
    UnionFind(int n){
        cnt=n;
        parent.resize(n);
        rank.resize(n,1);
        for(int i=0;i<n;++i)
            parent[i]=i;
    }
    int Find(int x){
        return x==parent[x]?x:(parent[x]=Find(parent[x]));
    }
    bool isConnected(int a,int b){
        int fa=Find(a),fb=Find(b);
        return fa==fb;
    }
    void Union(int a,int b){
        int fa=Find(a),fb=Find(b);
        if(fa==fb)return;
        if(rank[fa]>=rank[fb]){
            parent[fb]=fa;
            rank[fa]+=rank[fb];
        }
        else{
            parent[fa]=fb;
            rank[fb]+=rank[fa];
        }
        --cnt;
    }
    int getCnt(){
        return cnt;
    }
};

给定一个二维的矩阵,包含 'X' 和 'O'(字母 O)。

找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。

示例:

X X X X
X O O X
X X O X
X O X X


运行你的函数后,矩阵变为:

X X X X
X X X X
X X X X
X O X X


解释:

被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'。 任何不在边界上,或不与边界上的 'O' 相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。

class Solution {
public:
    void solve(vector<vector<char>>& board) {
        int m=board.size();
        if(m<=2)return ;
        int n=board[0].size();
        if(n<=2)return ;
        UnionFind uf(board);
        int BounderO=0;
        for(int i=0;i<m;++i){//首尾两列的O归为Bounder集合
            if(board[i][0]=='O')uf.Union(i*n+0,BounderO);
            if(board[i][n-1]=='O')uf.Union(i*n+n-1,BounderO);
        }
        for(int i=0;i<n;++i){//首尾两行的O归为Bounder集合
            if(board[0][i]=='O')uf.Union(0*n+i,BounderO);
            if(board[m-1][i]=='O')uf.Union((m-1)*n+i,BounderO);
        }
        for(int i=1;i<m-1;++i)
            for(int j=1;j<n-1;++j)
                if(board[i][j]=='O'){//跟上下左右的O集合合并
                    if(board[i-1][j]=='O')uf.Union(i*n+j,(i-1)*n+j);
                    if(board[i][j-1]=='O')uf.Union(i*n+j,(i)*n+j-1);
                    if(board[i+1][j]=='O')uf.Union(i*n+j,(i+1)*n+j);
                    if(board[i][j+1]=='O')uf.Union(i*n+j,(i)*n+j+1);
                }            
        for(int i=1;i<m-1;++i)
            for(int j=1;j<n-1;++j)
                if(board[i][j]=='O'&&!uf.isConnected(BounderO,i*n+j))//不是BounderO结合的O改为X
                    board[i][j]='X';             

    }
};

给你一个数组 equations,装着若干字符串表示的算式。每个算式 equations[i] 长度都是 4,而且只有这两种情况:a==b 或者 a!=b,其中 a,b 可以是任意小写字母。你写一个算法,如果 equations 中所有算式都不会互相冲突,返回 true,否则返回 false。

比如说,输入 ["a==b","b!=c","c==a"],算法返回 false,因为这三个算式不可能同时正确。

再比如,输入 ["c==c","b==d","x!=z"],算法返回 true,因为这三个算式并不会造成逻辑冲突。

我们前文说过,动态连通性其实就是一种等价关系,具有「自反性」「传递性」和「对称性」,其实 == 关系也是一种等价关系,具有这些性质。所以这个问题用 Union-Find 算法就很自然。

核心思想是,equations 中的算式根据 ==!= 分成两部分,先处理 == 算式,使得他们通过相等关系各自勾结成门派;然后处理 != 算式,检查不等关系是否破坏了相等关系的连通性

boolean equationsPossible(String[] equations) {
    // 26 个英文字母
    UF uf = new UF(26);
    // 先让相等的字母形成连通分量
    for (String eq : equations) {
        if (eq.charAt(1) == '=') {
            char x = eq.charAt(0);
            char y = eq.charAt(3);
            uf.union(x - 'a', y - 'a');
        }
    }
    // 检查不等关系是否打破相等关系的连通性
    for (String eq : equations) {
        if (eq.charAt(1) == '!') {
            char x = eq.charAt(0);
            char y = eq.charAt(3);
            // 如果相等关系成立,就是逻辑冲突
            if (uf.connected(x - 'a', y - 'a'))
                return false;
        }
    }
    return true;
}

班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。

给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果M[i][j] = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。

示例 1:

输入: 
[[1,1,0],
 [1,1,0],
 [0,0,1]]
输出: 2 
说明:已知学生0和学生1互为朋友,他们在一个朋友圈。
第2个学生自己在一个朋友圈。所以返回2。


示例 2:

输入: 
[[1,1,0],
 [1,1,1],
 [0,1,1]]
输出: 1
说明:已知学生0和学生1互为朋友,学生1和学生2互为朋友,所以学生0和学生2也是朋友,所以他们三个在一个朋友圈,返回1。


注意:


    N 在[1,200]的范围内。
    对于所有学生,有M[i][i] = 1。
    如果有M[i][j] = 1,则有M[j][i] = 1。

class Solution {
public:
    int findCircleNum(vector<vector<int>>& M) {
        int m=M.size();
        if(m<=1)return m;
        UnionFind uf(m);
        for(int i=1;i<m;++i)
            for(int j=0;j<i;++j)
                if(M[i][j]==1)uf.Union(i,j);
        return uf.getCnt();
    }
};

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值