2021夏数学表达式魔训

数学表达式魔训

Day 1

1.1 概述

学习第一天,感觉还好。
主要问题:矩阵和集合容易混

1.2 集合的表示与运算

  1. A = { 3 , 5 } \mathbf{A} = \{3, 5\} A={3,5}, 2 A = { ∅ , { 3 } , { 5 } , { 3 , 5 } } 2^{\mathbf{A}} = \{ \emptyset, \{3\}, \{5\}, \{3, 5\} \} 2A={,{3},{5},{3,5}}.
    Source Code: 2^{\mathbf{A}} = { \emptyset, {3}, {5}, {3, 5} }
  2. 2 ∅ = { ∅ } 2^{\emptyset} = \{\emptyset\} 2={}.
    Source Code: 2^{\emptyset} = {\emptyset}
  3. A = { 5 , 6 , 7 , 8 , 9 } = [ 5..9 ] = { a ∈ N ∣ 4 < a < 10 } \mathbf{A} = \{5, 6, 7, 8, 9\} = [5..9] = \{a \in \mathbb{N} \vert 4 < a < 10 \} A={5,6,7,8,9}=[5..9]={aN4<a<10}.
    Source Code: [5…9], {a \in \mathbb{N} \vert 4 < a < 10 }

1.3 向量与矩阵

[ 1 1 2 2 3 3 ] × [ 1 2 3 1 4 5 6 1 ] = [ 5 7 9 2 10 14 18 4 15 21 27 6 ] \left[\begin{array}{ll} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{array}\right] \times\left[\begin{array}{lll} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \end{array}\right]=\left[\begin{array}{ccc} 5 & 7 & 9 & 2 \\ 10 & 14 & 18 & 4 \\ 15 & 21 & 27& 6 \end{array}\right] 123123×[14253611]=510157142191827246

Source Code:

\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3
\end{array}\right] \times\left[\begin{array}{lll}
1 & 2 & 3 & 1 \\
4 & 5 & 6 & 1 
\end{array}\right]=\left[\begin{array}{ccc}
5 & 7 & 9 & 2 \\
10 & 14 & 18 & 4 \\
15 & 21 & 27& 6 
\end{array}\right]

[ 1 3 5 7 9 2 ] × [ 2 4 6 8 3 5 7 1 ] = [ 11 19 27 11 31 55 79 47 24 46 68 74 ] \begin{bmatrix} 1 & 3 \\ 5 & 7 \\ 9 & 2 \\ \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 6 & 8 \\ 3 & 5 & 7 & 1 \\ \end{bmatrix} = \begin{bmatrix} 11 & 19 & 27 & 11 \\ 31 & 55 & 79 & 47 \\ 24 & 46 & 68 & 74 \\ \end{bmatrix} 159372×[23456781]=113124195546277968114774

Source Code:

\begin{bmatrix}
1 & 3 \\
5 & 7 \\
9 & 2 \\ 
\end{bmatrix}
\times
\begin{bmatrix}
2 & 4 & 6 & 8 \\
3 & 5 & 7 & 1 \\
\end{bmatrix}
= \begin{bmatrix}
11 & 19 & 27 & 11 \\
31 & 55 & 79 & 47 \\
24 & 46 & 68 & 74 \\
\end{bmatrix}

Day 2

2.1 二元关系

  1. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}.
    R = { ( a , b ) ∈ A × A ∣ a m o d    2 = b m o d    2 } = { ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) , ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) , ( 5 , 1 ) , ( 9 , 1 ) , ( 8 , 2 ) , ( 9 , 5 ) } \mathbf{R} = \{(a, b) \in \mathbf{A} \times \mathbf{A} \vert a \mod 2 = b \mod 2\} = \{(1, 1), (2, 2), (5, 5), (8, 8), (9, 9), (1, 5), (1, 9), (2, 8), (5, 9), (5, 1), (9, 1), (8, 2), (9, 5)\} R={(a,b)A×Aamod2=bmod2}={(1,1),(2,2),(5,5),(8,8),(9,9),(1,5),(1,9),(2,8),(5,9),(5,1),(9,1),(8,2),(9,5)}.
    P = { { 1 , 5 , 9 } , { 2 , 8 } } \mathcal{P} = \{\{1, 5, 9\}, \{2, 8\} \} P={{1,5,9},{2,8}}.

  2. A = { 1 , 2 , 5 , 8 , 9 } \mathbf{A} = \{1, 2, 5, 8, 9\} A={1,2,5,8,9}.
    R 1 = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) } \mathbf{R}_1 = \{(1, 5), (1, 9), (2, 8), (5, 9)\} R1={(1,5),(1,9),(2,8),(5,9)}.
    R 2 = { ( 2 , 5 ) , ( 2 , 8 ) , ( 5 , 8 ) } \mathbf{R}_2 = \{(2, 5), (2, 8), (5, 8)\} R2={(2,5),(2,8),(5,8)}.
    R 2 ∘ R 1 = { ( 1 , 8 ) } \mathbf{R}_2 \circ \mathbf{R}_1 = \{(1, 8)\} R2R1={(1,8)}.
    R 1 + = ⋃ i = 1 ∣ A ∣ R i = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) } \mathbf{R}_1^+ = \bigcup_{i = 1}^{\vert \mathbf{A} \vert} \mathbf{R}^i = \{(1, 5), (1, 9), (2, 8), (5, 9)\} R1+=i=1ARi={(1,5),(1,9),(2,8),(5,9)}.
    R 1 ∗ = R 1 + ⋃ R 0 = { ( 1 , 5 ) , ( 1 , 9 ) , ( 2 , 8 ) , ( 5 , 9 ) , ( 1 , 1 ) , ( 2 , 2 ) , ( 5 , 5 ) , ( 8 , 8 ) , ( 9 , 9 ) } \mathbf{R}_1^* = \mathbf{R}_1^+ \bigcup \mathbf{R}^0 = \{(1, 5), (1, 9), (2, 8), (5, 9), (1, 1), (2, 2), (5, 5), (8, 8), (9, 9)\} R1=R1+R0={(1,5),(1,9),(2,8),(5,9),(1,1),(2,2),(5,5),(8,8),(9,9)}.

2.2 函数

定义域: 身高.
值域: 高矮.
从身高到高矮的一种关系.

2.3 范数

A = [ 1 − 2 3 4 − 5 6 7 − 8 9 ] \mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 4 & -5 & 6 \\ 7 & -8 & 9 \\ \end{bmatrix} A=147258369.
∣ ∣ A ∣ ∣ 0 = 9 {||\mathbf{A}||}_0 = 9 A0=9.
∣ ∣ A ∣ ∣ 1 = 1 + ∣ − 2 ∣ + 3 + ⋯ + 9 = 45 {||\mathbf{A}||}_1 = 1 + |-2| + 3 + \dots + 9 = 45 A1=1+2+3++9=45.
∣ ∣ A ∣ ∣ 2 = [ 1 4 9 16 25 36 49 64 81 ] = 285 {||\mathbf{A}||}_2 = \begin{bmatrix} 1 & 4 & 9 \\ 16 & 25 & 36 \\ 49 & 64 & 81 \\ \end{bmatrix}=\sqrt{285} A2=116494256493681=285 .
∣ ∣ A ∣ ∣ ∞ = 9 {||\mathbf{A}||}_{\infty}= 9 A=9

2.4 min 与 argmin

用户信息表 X = [ x i j ] n × d u \mathbf{X} = [x_{ij}]_{n \times d_u} X=[xij]n×du.
商品信息表 T = [ t i j ] m × d t \mathbf{T} = [t_{ij}]_{m \times d_t} T=[tij]m×dt.
由函数 f f f得到 X \mathbf{X} X T \mathbf{T} T的联合矩阵 U = [ u i j ] ( n m ) × ( d u + d t ) \mathbf{U} = [u_{ij}]_{(nm) \times (d_u + d_t)} U=[uij](nm)×(du+dt).
R \mathbf{R} R视作 ( n m ) × 1 (nm) \times 1 (nm)×1的向量.
建立 U \mathbf{U} U R \mathbf{R} R之间的损失函数并最小化.

  1. 浏览矩阵 R = [ r i j ] n × m \mathbf{R} = [r_{ij}]_{n \times m} R=[rij]n×m取值范围为 { 0 , 1 } \{0, 1\} {0,1}.
    此时为二分类, 样本数视为 n m nm nm, 特征数视为 d u + d t d_u + d_t du+dt, 标签数视为 1 1 1, 标签的取值记为 0 0 0 1 1 1.
  2. 评分矩阵 R = [ r i j ] n × m \mathbf{R} = [r_{ij}]_{n \times m} R=[rij]n×m取值范围为 { 0 , 1 , 2 , 3 , 4 , 5 } \{0, 1, 2, 3, 4, 5\} {0,1,2,3,4,5}.
    此时为回归, 样本数视为 n m nm nm, 特征数视为 d u + d t d_u + d_t du+dt, 标签数视为 1 1 1, 标签的取值为 [ 0 , 5 ] [0, 5] [0,5]之间的数.

Day 3

3.1 累加、累乘与积分

  1. ∑ i = 1 ∞ x 2 i \sum_{i = 1}^{\infty} x_{2i} i=1x2i
  2. ∫ 0 ∞ x 2 d x \int_{0}^{\infty} x^2 \mathrm{d}x 0x2dx

3.2 线性回归

X = [ 2 1 4 1 7 1 ] \mathbf{X} = \begin{bmatrix} 2 & 1 \\ 4 & 1 \\ 7 & 1 \\ \end{bmatrix} X=247111, Y = [ 7 9 14 ] \mathbf{Y} = \begin{bmatrix} 7 \\ 9 \\ 14 \\ \end{bmatrix} Y=7914.

  1. w = ( X T X ) − 1 X T Y = [ 1.42 3.84 ] \mathbf{w} = (\mathbf{X}^\mathrm{T} \mathbf{X})^{-1} \mathbf{X}^\mathrm{T} \mathbf{Y} = \begin{bmatrix} 1.42 \\ 3.84 \\ \end{bmatrix} w=(XTX)1XTY=[1.423.84], Y p = [ 6.68 9.52 13.79 ] \mathbf{Y}_p = \begin{bmatrix} 6.68 \\ 9.52 \\ 13.79 \\ \end{bmatrix} Yp=6.689.5213.79, l o s s = 0.65 loss = 0.65 loss=0.65.
  2. w = ( X T X − λ I ) − 1 X T Y = [ 1.27 4.64 ] \mathbf{w} = (\mathbf{X}^\mathrm{T} \mathbf{X} - \lambda \mathbf{I})^{-1} \mathbf{X}^\mathrm{T} \mathbf{Y} = \begin{bmatrix} 1.27 \\ 4.64 \\ \end{bmatrix} w=(XTXλI)1XTY=[1.274.64], Y p = [ 7.18 9.73 13.54 ] \mathbf{Y}_p = \begin{bmatrix} 7.18 \\ 9.73 \\ 13.54 \\ \end{bmatrix} Yp=7.189.7313.54, l o s s = 0.88 loss = 0.88 loss=0.88, λ = 0.1 \lambda = 0.1 λ=0.1.

3.3 Logistic 回归

  1. x \mathbf{x} x与超平面之间的距离在 ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)之间, 将其转为 ( 0 , 1 ) (0, 1) (0,1)之间的概率. 在 x \mathbf{x} x较大或较小时, 概率接近 1 1 1 0 0 0, 适合二分类.
  2. 使用sigmoid函数, 将原来的线性模型转为非线性模型. 可以将一些线性不可分的点分开. 是不是可以把sigmoid换成其它函数? 对于特定场景是不是可以建一个特定的函数?
  3. y y y取值为 1 1 1 0 0 0的两种情况结合起来, 建立一个优化目标. 能不能给两种情况加权?加权时再引入新的函数,来个套娃操作?
  4. 取log将原来的连乘转为连加, 方便求解. 感觉跟熵的公式有点像呀.
  5. 万能的梯度下降, 求解参数。

注:上述内容为个人学习过程中的笔记,如有不当的地方还望指正

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值