数学表达式: 从恐惧到单挑 (6. 向量/矩阵的范数)

6. 向量/矩阵的范数

向量可以看作是 1 × n 1 \times n 1×n 矩阵, 但从数学的角度, 其范数的意义不同, 所以不可以将向量范数直接扩充用于矩阵范数.

6.1 向量的 l p l_p lp 范数

给定向量 x = [ x 1 , … , x n ] \mathbf{x} = [x_1, \dots, x_n] x=[x1,,xn].
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p (1) \Vert \mathbf{x} \Vert_p = \left(\sum_{i = 1}^n \vert x_i \vert^p\right)^{\frac{1}{p}} \tag{1} xp=(i=1nxip)p1(1)
源码: \Vert \mathbf{x} \Vert_p = \left(\sum_{i = 1}^n \vert x \vertp\right){\frac{1}{p}} \tag{1}
如果是在 Latex 环境下, 应把 \Vert 换成 \|.

6.1.1 l 0 l_0 l0 范数

∥ x ∥ 0 = ∣ { 1 ≤ i ≤ n ∣ x i ≠ 0 } ∣ (2) \Vert \mathbf{x} \Vert_0 = \vert \{1 \le i \le n \vert x_i \ne 0\} \vert \tag{2} x0={1inxi=0}(2)
语义: 非零项个数.

6.1.2 l 1 l_1 l1 范数

p = 1 p = 1 p=1
∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ (3) \Vert \mathbf{x} \Vert_1 = \sum_{i = 1}^n \vert x_i\vert \tag{3} x1=i=1nxi(3)
语义: 绝对值之和.
常用于计算绝对误差.

6.1.3 l 2 l_2 l2 范数

p = 2 p = 2 p=2
∥ x ∥ 2 = ∑ i = 1 n x i 2 (4) \Vert \mathbf{x} \Vert_2 = \sqrt{\sum_{i = 1}^n x^2_i} \tag{4} x2=i=1nxi2 (4)

∥ x ∥ 2 2 = ∑ i = 1 n x i 2 (5) \Vert \mathbf{x} \Vert^2_2 = \sum_{i = 1}^n x^2_i \tag{5} x22=i=1nxi2(5)
语义: 平方和.
常用于计算平方误差.

6.1.4 l ∞ l_\infty l 范数

∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ (6) \Vert \mathbf{x} \Vert_{\infty} = \max_{1 \le i \le n} \vert x_i \vert \tag{6} x=1inmaxxi(6)
源码: \Vert \mathbf{x} \Vert_{\infty} = \max_{1 \le i \le n} \vert x_i \vert.
infty 是 infinity 的简写.
语义: 绝大值的最大值.

6.2 矩阵的范数

给定矩阵 X = [ x i j ] n × m \mathbf{X} = [x_{ij}]_{n \times m} X=[xij]n×m.

6.2.1 Fro 范数

∥ X ∥ F = ∑ i , j x i j 2 (7) \Vert \mathbf{X} \Vert_F = \sqrt{\sum_{i, j} x_{ij}^2} \tag{7} XF=i,jxij2 (7)
经常取其平方, 即
∥ X ∥ F 2 = ∑ i , j x i j 2 (8) \Vert \mathbf{X} \Vert_F^2 = \sum_{i, j} x_{ij}^2 \tag{8} XF2=i,jxij2(8)
这有直接将向量 l 2 l_2 l2 范数进行扩充的意思.
注意: 这里忽略了 i , j i, j i,j 的范围, 就表示用最大可能范围.

6.2.3 l 2 , 1 l_{2,1} l2,1 范数

对每个行向量求 l 2 l_2 l2 范数, 获得一个列向量. 再对该列向量取 l 1 l_1 l1 范数.
∥ X ∥ 2 , 1 = ∑ i ∑ j x i j 2 (9) \Vert \mathbf{X} \Vert_{2,1} = \sum_{i} \sqrt{\sum_j x_{ij}^2} \tag{9} X2,1=ijxij2 (9)
注意:

  1. 这里使用向量范数定义矩阵范数, 而不是直接扩充到矩阵.
  2. ∥ X ∥ F 2 \Vert \mathbf{X} \Vert_F^2 XF2 相当于先求行向量的 l 2 l_2 l2 范数平方, 再求列向量的 l 1 l_1 l1 范数, 即:
    ∥ X ∥ F 2 = ∑ i ∥ x i ∥ 2 2 (10) \Vert \mathbf{X} \Vert_F^2 = \sum_i \Vert \mathbf{x}_i\Vert_2^2 \tag{10} XF2=ixi22(10)

6.2.3 实际应用

线性模型经常使用系数矩阵 W W W l 2 , 1 l_{2, 1} l2,1 范数作为正则项.
min ⁡ W ∥ X W − Y ∥ F 2 + λ ∥ W ∥ 2 , 1 (11) \min_{\mathbf{W}} \Vert \mathbf{XW} - \mathbf{Y}\Vert_F^2 + \lambda \Vert \mathbf{W} \Vert_{2, 1} \tag{11} WminXWYF2+λW2,1(11)

6.3 作业

自己给定一个向量、一个矩阵并计算其各种范数.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值