BRISK算法是2011年ICCV上《BRISK:Binary Robust Invariant Scalable Keypoints》文章中,提出来的一种特征提取算法,也是一种二进制的特征描述算子。
它具有较好的旋转不变性、尺度不变性,较好的鲁棒性等。在图像配准应用中,速度比较:SIFT<SURF<BRISK<FREAK<ORB,在对有较大模糊的图像配准时,BRISK算法在其中表现最为出色。
BRISK算法
特征点检测
BRISK算法主要利用FAST9-16进行特征点检测(为什么是主要?因为用到一次FAST5-8),可参见博客:FAST特征点检测算法。要解决尺度不变性,就必须在尺度空间进行特征点检测,于是BRISK算法中构造了图像金字塔进行多尺度表达。
建立尺度空间
构造n个octave层(用ci表示)和n个intra-octave层(用di表示),文章中n=4,i={0,1,...,n-1}。假设有图像img,octave层的产生:c0层就是img原图像,c1层是c0层
BRISK是一种二进制特征提取算法,具有旋转和尺度不变性,适合图像配准。通过FAST检测角点,建立尺度空间进行多尺度检测,并进行非极大值抑制和亚像素插值来定位特征点。接着,使用高斯滤波为特征点创建描述符,最后进行匹配和透视变换检测。在模糊图像配准中,BRISK表现优秀。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



