基本步骤:
- 数据准备:将数据集切分为训练节和验证集,并将数据转为tfrecord格式
- 下载TensorFlow Slim的源代码:github.com/tensorflow/models
- 定义新的datasets文件:在slim/datasets中,定义了所有可用的数据库,为了使用前面创建tfrecord数据进行训练,必须要在datasets中定义新的数据库。
- 准备训练文件夹:在slim文件夹下创建一个新的文件夹,在新的文件下再创建三个文件夹,分别为
data:将前面准备好的tfthread格式数据和txt标签复制进去
pretrained:首先下载你需要借助的模型,将其训练好的参数文件(.ckpt格式)复制进去
data_dir:保存训练过程中的日志和模型
- 开始训练:在slim文件夹下编写训练的程序进行训练,注意模型名称和训练范围。训练中断了,下次运行会接着上次的继续训练
- 验证模型准确率
- 导出模型并对单张图片进行识别
这篇文章关注的重点是如何使用TensorFlow 在自己的图像数据上训练深度学习模型,主要涉及的方法是对已经预训练好的ImageNet模型进行微调( Fine-tune)。本章将会从四个方面讲解:数据准备、训练模型、在测试集上验证准确率、导出