深度学习二、使用TensorFlow Slim微调经典模型进行图像识别(训练自己的数据集)

35 篇文章 443 订阅 ¥9.90 ¥99.00
本文详细介绍了如何使用TensorFlow Slim微调经典模型(如VGG16)进行图像识别,包括数据准备、定义新的datasets、训练模型、模型能力评估、导出模型和对单张图片进行预测的步骤。通过微调预训练模型,可以有效地在自定义数据集上训练深度学习模型,提高模型性能。
摘要由CSDN通过智能技术生成

基本步骤:

  1. 数据准备:将数据集切分为训练节和验证集,并将数据转为tfrecord格式
  2. 下载TensorFlow Slim的源代码:github.com/tensorflow/models
  3. 定义新的datasets文件:在slim/datasets中,定义了所有可用的数据库,为了使用前面创建tfrecord数据进行训练,必须要在datasets中定义新的数据库。
  4. 准备训练文件夹:在slim文件夹下创建一个新的文件夹,在新的文件下再创建三个文件夹,分别为

    data:将前面准备好的tfthread格式数据和txt标签复制进去

    pretrained:首先下载你需要借助的模型,将其训练好的参数文件(.ckpt格式)复制进去

    data_dir:保存训练过程中的日志和模型

  5. 开始训练:在slim文件夹下编写训练的程序进行训练,注意模型名称和训练范围。训练中断了,下次运行会接着上次的继续训练
  6. 验证模型准确率
  7. 导出模型并对单张图片进行识别

这篇文章关注的重点是如何使用TensorFlow 在自己的图像数据上训练深度学习模型,主要涉及的方法是对已经预训练好的ImageNet模型进行微调( Fine-tune)。本章将会从四个方面讲解:数据准备、训练模型、在测试集上验证准确率、导出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值