深度循环神经网络

37 篇文章 1 订阅
27 篇文章 1 订阅

前言

深度循环神经网络(Deep Recurrent Neural Network,DRNN)是一种在时间序列数据上表现出色的神经网络结构。它可以处理长序列数据,如语音、文本和视频等,具有很强的时序建模能力。本文将介绍DRNN的方法历史、优点和与其他方法的不同之处,并给出详细的理论推导过程和计算步骤。

DRNN的方法历史

DRNN最早由Hochreiter和Schmidhuber在1997年提出,他们将循环神经网络(Recurrent Neural Network,RNN)的层数增加到了多层,从而提高了模型的表现能力。随着深度学习的发展,DRNN也得到了广泛的应用和研究。

DRNN的优点

DRNN的主要优点包括:

  • 可以处理长序列数据,具有很强的时序建模能力;
  • 可以通过多层结构提高模型的表现能力;
  • 可以通过反向传播算法进行端到端的训练。

DRNN与其他方法的不同之处

与传统的RNN相比,DRNN增加了多层结构,从而提高了模型的表现能力。与卷积神经网络(Convolutional Neural Network,CNN)相比,DRNN可以处理不同长度的输入序列,并且可以学习到长期依赖关系。

DRNN的结构

DRNN的结构可以用下面的Mermaid代码表示:

输入
LSTM1
LSTM2
...
LSTMn
输出

其中,LSTM表示长短时记忆网络(Long Short-Term Memory),它是一种常用的RNN变种。

具体来说,DRNN的每一层都由一个LSTM组成,它们共享参数。每个LSTM都包含一个输入门、一个遗忘门和一个输出门,以及一个细胞状态。LSTM的具体计算过程可以参考下面的公式:

i t = σ ( W x i x t + W h i h t − 1 + W c i c t − 1 + b i ) f t = σ ( W x f x t + W h f h t − 1 + W c f c t − 1 + b f ) o t = σ ( W x o x t + W h o h t − 1 + W c o c t + b o ) c t = f t c t − 1 + i t tanh ( W x c x t + W h c h t − 1 + b c ) h t = o t tanh ( c t ) \begin{aligned} i_t &= \sigma(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}c_{t-1}+b_i) \\ f_t &= \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}c_{t-1}+b_f) \\ o_t &= \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}c_t+b_o) \\ c_t &= f_tc_{t-1}+i_t\text{tanh}(W_{xc}x_t+W_{hc}h_{t-1}+b_c) \\ h_t &= o_t\text{tanh}(c_t) \end{aligned} itftotctht=σ(Wxixt+Whiht1+Wcict1+bi)=σ(Wxfxt+Whfht1+Wcfct1+bf)=σ(Wxoxt+Whoht1+Wcoct+bo)=ftct1+ittanh(Wxcxt+Whcht1+bc)=ottanh(ct)

其中, x t x_t xt表示当前时刻的输入, h t − 1 h_{t-1} ht1表示上一时刻的隐藏状态, c t − 1 c_{t-1} ct1表示上一时刻的细胞状态, i t i_t it f t f_t ft o t o_t ot分别表示输入门、遗忘门和输出门的输出, σ \sigma σ表示sigmoid函数, W W W b b b表示权重和偏置。

DRNN的理论推导过程

为了方便推导,我们假设DRNN的每一层只包含一个神经元。设 x t x_t xt为输入, h t h_t ht为隐藏状态, y t y_t yt为输出, W h x W_{hx} Whx W h h W_{hh} Whh分别为输入和隐藏状态的权重, b b b为偏置,则DRNN的计算过程可以表示为:

h t = tanh ( W h x x t + W h h h t − 1 + b ) y t = h t \begin{aligned} h_t &= \text{tanh}(W_{hx}x_t+W_{hh}h_{t-1}+b) \\ y_t &= h_t \end{aligned} htyt=tanh(Whxxt+Whhht1+b)=ht

为了方便推导,我们将DRNN展开成如下形式:

h t = tanh ( W h x x t + W h h tanh ( W h x x t − 1 + W h h tanh ( ⋯   ) ) ) y t = h t \begin{aligned} h_t &= \text{tanh}(W_{hx}x_t+W_{hh}\text{tanh}(W_{hx}x_{t-1}+W_{hh}\text{tanh}(\cdots))) \\ y_t &= h_t \end{aligned} htyt=tanh(Whxxt+Whhtanh(Whxxt1+Whhtanh()))=ht

t t t时刻的误差为 e t e_t et,则 t − 1 t-1 t1时刻的误差可以表示为:

e t − 1 = ∂ e t ∂ h t − 1 ∂ h t ∂ h t − 1 + ∂ e t ∂ h t ∂ h t ∂ h t − 1 e_{t-1} = \frac{\partial e_t}{\partial h_{t-1}}\frac{\partial h_t}{\partial h_{t-1}}+\frac{\partial e_t}{\partial h_t}\frac{\partial h_t}{\partial h_{t-1}} et1=ht1etht1ht+htetht1ht

其中, ∂ e t ∂ h t \frac{\partial e_t}{\partial h_t} htet可以通过反向传播算法计算得到。 ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ht1ht可以表示为:

∂ h t ∂ h t − 1 = W h h sech 2 ( W h x x t − 1 + W h h tanh ( ⋯   ) ) \frac{\partial h_t}{\partial h_{t-1}} = W_{hh}\text{sech}^2(W_{hx}x_{t-1}+W_{hh}\text{tanh}(\cdots)) ht1ht=Whhsech2(Whxxt1+Whhtanh())

其中, sech \text{sech} sech表示双曲正切函数的反函数。我们可以将 sech 2 \text{sech}^2 sech2表示为:

sech 2 ( x ) = 1 − tanh 2 ( x ) \text{sech}^2(x) = 1-\text{tanh}^2(x) sech2(x)=1tanh2(x)

因此, ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ht1ht可以表示为:

∂ h t ∂ h t − 1 = W h h ( 1 − tanh 2 ( W h x x t − 1 + W h h tanh ( ⋯   ) ) ) \frac{\partial h_t}{\partial h_{t-1}} = W_{hh}(1-\text{tanh}^2(W_{hx}x_{t-1}+W_{hh}\text{tanh}(\cdots))) ht1ht=Whh(1tanh2(Whxxt1+Whhtanh()))

由于DRNN的每一层都共享参数,因此 ∂ h t ∂ h t − 1 \frac{\partial h_t}{\partial h_{t-1}} ht1ht可以表示为:

∂ h t ∂ h t − 1 = W h h ( 1 − tanh 2 ( W h x x t − 1 + W h h h t − 1 ) ) \frac{\partial h_t}{\partial h_{t-1}} = W_{hh}(1-\text{tanh}^2(W_{hx}x_{t-1}+W_{hh}h_{t-1})) ht1ht=Whh(1tanh2(Whxxt1+Whhht1))

因此, t − 1 t-1 t1时刻的误差可以表示为:

e t − 1 = ∂ e t ∂ h t − 1 ∂ h t ∂ h t − 1 + ∂ e t ∂ h t W h h ( 1 − tanh 2 ( W h x x t − 1 + W h h h t − 1 ) ) e_{t-1} = \frac{\partial e_t}{\partial h_{t-1}}\frac{\partial h_t}{\partial h_{t-1}}+\frac{\partial e_t}{\partial h_t}W_{hh}(1-\text{tanh}^2(W_{hx}x_{t-1}+W_{hh}h_{t-1})) et1=ht1etht1ht+htetWhh(1tanh2(Whxxt1+Whhht1))

由此,我们可以使用反向传播算法对DRNN进行训练。

DRNN的计算步骤

为了方便,我们假设DRNN的每一层包含4个神经元。设 x t x_t xt为输入, h t h_t ht为隐藏状态, y t y_t yt为输出, W h x W_{hx} Whx W h h W_{hh} Whh W h y W_{hy} Why分别为输入、隐藏状态和输出的权重, b h b_h bh b y b_y by分别为隐藏状态和输出的偏置,则DRNN的计算过程可以表示为:

h t = tanh ( W h x x t + W h h h t − 1 + b h ) y t = softmax ( W h y h t + b y ) \begin{aligned} h_t &= \text{tanh}(W_{hx}x_t+W_{hh}h_{t-1}+b_h) \\ y_t &= \text{softmax}(W_{hy}h_t+b_y) \end{aligned} htyt=tanh(Whxxt+Whhht1+bh)=softmax(Whyht+by)

其中, softmax \text{softmax} softmax表示softmax函数。设 t t t时刻的标签为 y t y_t yt,则 t t t时刻的损失函数可以表示为:

L t = − ∑ i = 1 N y t , i log ⁡ y ^ t , i L_t = -\sum_{i=1}^Ny_{t,i}\log\hat{y}_{t,i} Lt=i=1Nyt,ilogy^t,i

其中, N N N为类别数, y ^ t , i \hat{y}_{t,i} y^t,i为模型预测的 i i i类的概率。我们可以使用随机梯度下降算法对模型进行训练。

具体来说,对于每一个训练样本 ( x t , y t ) (x_t,y_t) (xt,yt),我们可以按照如下步骤进行计算:

  1. 前向传播。计算 h t h_t ht y t y_t yt
  2. 计算损失函数。计算 L t L_t Lt
  3. 反向传播。计算 ∂ L t ∂ W h x \frac{\partial L_t}{\partial W_{hx}} WhxLt ∂ L t ∂ W h h \frac{\partial L_t}{\partial W_{hh}} WhhLt ∂ L t ∂ W h y \frac{\partial L_t}{\partial W_{hy}} WhyLt ∂ L t ∂ b h \frac{\partial L_t}{\partial b_h} bhLt ∂ L t ∂ b y \frac{\partial L_t}{\partial b_y} byLt
  4. 更新参数。根据 ∂ L t ∂ W h x \frac{\partial L_t}{\partial W_{hx}} WhxLt ∂ L t ∂ W h h \frac{\partial L_t}{\partial W_{hh}} WhhLt ∂ L t ∂ W h y \frac{\partial L_t}{\partial W_{hy}} WhyLt ∂ L t ∂ b h \frac{\partial L_t}{\partial b_h} bhLt ∂ L t ∂ b y \frac{\partial L_t}{\partial b_y} byLt更新 W h x W_{hx} Whx W h h W_{hh} Whh W h y W_{hy} Why b h b_h bh b y b_y by

我们可以使用PyTorch实现上述步骤。下面是一个简单的例子:

import torch
import torch.nn as nn

class DRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(DRNN, self).__init__()
        self.hidden_size = hidden_size
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)
    
    def forward(self, x):
        h0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
        c0 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

# 定义模型
input_size = 10
hidden_size = 20
output_size = 2
model = DRNN(input_size, hidden_size, output_size)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# 训练模型
for epoch in range(num_epochs):
    for i, (inputs, labels) in enumerate(train_loader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

在上面的例子中,我们定义了一个DRNN模型,并使用交叉熵损失函数和随机梯度下降算法对模型进行训练。具体来说,我们将数据加载到设备上,然后将数据输入到模型中,计算模型输出和损失函数,然后使用反向传播算法计算梯度并更新模型参数。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
当然可以,以下是一个简单的MATLAB代码示例,使用深度循环神经网络(RNN)实现超分辨率(SR)感知。 ```matlab % 训练集和测试集 load('SR_data.mat'); X_train = LR_train; Y_train = HR_train; X_test = LR_test; Y_test = HR_test; % 超参数定义 num_epochs = 50; batch_size = 16; learning_rate = 0.001; hidden_size = 128; num_layers = 3; input_size = size(X_train, 2); output_size = size(Y_train, 2); % RNN模型定义 model = rnn(hidden_size, num_layers, input_size, output_size); % 损失函数和优化器定义 criterion = nn.MSECriterion(); optimizer = optim.SGD(model:getParameters(), learning_rate); % 开始训练 for epoch = 1:num_epochs % 每个epoch重新打乱训练集 random_indices = randperm(size(X_train, 1)); X_train = X_train(random_indices, :); Y_train = Y_train(random_indices, :); % minibatch训练 for i = 1:batch_size:size(X_train, 1) local_batch_size = math.min(batch_size, size(X_train, 1) - i + 1); local_X_train = X_train(i:i+local_batch_size-1,:); local_Y_train = Y_train(i:i+local_batch_size-1,:); -- 前向传递和计算损失 outputs = model:forward(local_X_train); loss = criterion:forward(outputs, local_Y_train); -- 反向传递和更新参数 gradOutputs = criterion:backward(outputs, local_Y_train); model:backward(local_X_train, gradOutputs); optimizer:updateParameters(learning_rate); end % 训练集和测试集上的评估 train_loss = criterion:forward(model:forward(X_train), Y_train); test_loss = criterion:forward(model:forward(X_test), Y_test); fprintf('Epoch %d, train_loss: %f, test_loss: %f\n', epoch, train_loss, test_loss); end % 预测SR图像 Y_pred = model:forward(X_test); ``` 需要注意的是,这只是一个简单的示例代码,你需要根据自己的数据和具体任务进行修改。此外,使用深度循环神经网络(RNN)实现超分辨率(SR)感知可能不是最优的选择,你可以考虑使用其他模型和算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值