Mathematica 训练课(1)-初识Mathematica

本文是Mathematica训练课的第一部分,介绍了Mathematica的基本信息、客户群体、用户界面和初步操作。Mathematica是一款强大的科学计算软件,广泛应用于科技工作者和教学中。内容涵盖基本运算符、函数用法、图形绘制和软件进阶,包括与多种系统的集成。文章强调Mathematica的多功能性,从简单的计算到复杂的模型解析,是科研和教学的得力工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于mathematics的使用,我们可以从四个步骤进行学习,逐渐到熟练使用。

(一)初认识

主要讲解Mathematica的最为基本的知识,包括操作运算符用法以及基本的计算函数。

(二)函数用法

主要用函数的用法出发总结出Mathematica最为重要的用法,并通过实例演示。

(三)图形绘制

主要讲解利用Mathematica如何绘图,并进一步修图,实现数据计算与图形的可视化操作。

(四)软件进阶

Mathematica如何被C++和Python结合,实现联合调用操作。和基于DLL、SQL、Java、.NET、C++、FORTRAN、CUDA、OpenCL以及http的系统相链接的工具

注:[关于如何安装软件,网络上有大量的教程,大家可以按照自己需要安装软件,官网地址:
https://www.wolfram.com/mathematica/


今天主要是

Mathematica入门教程 Mathematica的基本语法特征   如果你是第一次使用Mathematica,那么以下几点请你一定牢牢记住: Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名。 系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Conjugate[z]等。 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。 当你赋予变量任何一个值,除非你明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,它将始终保持原值不变。 一定要注意四种括号的用法:()圆括号表示项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x], BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔)。当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果。 一.数的表示及计算                                                       1.在Mathematica中你不必考虑数的精确度,因为除非你指定输出精度,Mathematica总会以绝对精确的形式输出结果。例如:你输入 In[1]:=378/123,系统会输出Out[1]:=126/41,如果想得到近似解,则应输入 In[2]:=N[378/123,5],即求其5位有效数字的数值解,系统会输出Out[2]:=3.073
this file contains:A Mathematica Primer for Physicists-CRC Press (2018).pdf An Elementary Introduction to the Wolfram Language 2ed.pdf An Engineer's guide to Mathematica.pdf An Introduction to Programming with mma.pdf Classical Mechanics with Mathematica?-Birkh?user (2018).pdf CRC standard curves and surfaces with Mathematica-CRC Press (2016).pdf Dynamical Systems with Applications Using Mathematica.pdf Essentials of Programming in Mathematica.pdf Foundations of Fluid Mechanics with Applications Problem Solving Using Mathematica.pdf Geographical Models with Mathematica- ISTE Press - Elsevier (2017).pdf Geometric Optics_ Theory and Design of Astronomical Optical Systems Using Mathematica.pdf Group Theory in Solid State Physics and Photonics Problem Solving with Mathematica.pdf Groups and Manifolds_ Lectures for Physicists with Examples in Mathematica (2017, de Gruyter).pdf HANDS-ON START TO WOLFRAM 2016.pdf Introduction to mma with Applications.pdf Irreducibility and Computational Equivalence 10 Years After Wolfram's A New Kind of Science.pdf Mathematica Beyond Mathematics. The Wolfram Language in the Real World.pdf Mathematica by Example 5 Edition-Academic Press (2017).pdf Mathematica介绍及数学建模中的应用.pdf mma for Bioinformatics. A Wolfram Language Approach to Omics-Springer (2018).pdf Molecular Physical Chemistry_ A Computer-based Approach using Mathematica? and Gaussian-Springer International Publishing (2017).pdf Raspbian OS Programming with the Raspberry Pi_ IoT Projects with Wolfram, Mathematica, and Scratch-Apress (2019).pdf Schaum's Outline of Mathematica and the wolfram language.pdf
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值