题目大意
有一个机器人的位于一个 m × n 个网格左上角。
机器人每一时刻只能向下或者向右移动一步。机器人试图达到网格的右下角。
问有多少条不同的路径?
注意事项
n和m均不超过100
样例
给出 m = 3 和 n = 3, 返回 6.
给出 m = 4 和 n = 5, 返回 35.
解题思路
动态规划的最优用逆推,遍历用顺推。全局最优则局部最优,局部遍历则全局遍历。
除了最左列和最上行,A点的路径条数 = A上点的条数 + A左点的条数。
public int uniquePaths(int m, int n) {
int[][] npath = new int[m][n];
npath[0][0] = 1;
for (int i=0; i<m; i++) {
for (int j=0; j<n; j++) {
if (i==0 && j==0)
continue;
if (j == 0) {
npath[i][j] += npath[i-1][j];
} else if (i == 0) {
npath[i][j] += npath[i][j-1];
} else {
npath[i][j] += npath[i-1][j] + npath[i][j-1];
}
}
}
return npath[m-1][n-1];
}