- Redundant Connection
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, …, N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
| |
4 - 3
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
思路:
检测重复的边,方法很多种,这里介绍并查集解法。
遍历所有的边,每次都Union操作,直到Union失败,即判定两个点的归属集一样。
代码
class Solution {
public int[] findRedundantConnection(int[][] edges) {
DisjointSet disjointSet = new DisjointSet(edges.length);
for (int[] edge : edges) {
if (!disjointSet.union(edge[0] - 1, edge[1] - 1))
return edge;
}
throw new IllegalArgumentException();
}
static class DisjointSet {
private int[] parent;
private int[] rank;
//初始化并查集
public DisjointSet(int n) {
if (n < 0) throw new IllegalArgumentException();
parent = new int[n];
rank = new int[n];
for(int i = 0; i <n; i++){
parent[i] = i;
rank[i] = 1;
}
}
public int find(int x) {
int r = x;
while(parent[r] != r)
r = parent[r];
//路径压缩
while(parent[x] != r){
x = parent[x];
parent[x] = r;
}
return r;
}
// Return false if x, y are connected.
public boolean union(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX == rootY) return false;
// Make root of smaller rank point to root of larger rank.
if (rank[rootX] < rank[rootY]) parent[rootX] = rootY;
else if (rank[rootX] > rank[rootY]) parent[rootY] = rootX;
else {
parent[rootX] = rootY;
rank[rootY]++;
}
return true;
}
}
}