检测无向图多余边

  1. Redundant Connection

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, …, N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
1
/
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
| |
4 - 3
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

思路:
检测重复的边,方法很多种,这里介绍并查集解法。
遍历所有的边,每次都Union操作,直到Union失败,即判定两个点的归属集一样。

代码

class Solution {
      public int[] findRedundantConnection(int[][] edges) {
          
        DisjointSet disjointSet = new DisjointSet(edges.length);
        
        for (int[] edge : edges) {
            if (!disjointSet.union(edge[0] - 1, edge[1] - 1)) 
                return edge;
        }
        throw new IllegalArgumentException();
    }
    
    static class DisjointSet {
        
        private int[] parent;
        private int[] rank; 
        
        //初始化并查集
        public DisjointSet(int n) {
            if (n < 0) throw new IllegalArgumentException();
            parent = new int[n];
            rank = new int[n];
            for(int i = 0; i <n; i++){
                parent[i] = i;
                rank[i] = 1;
            }
        }
        
        public int find(int x) {
            int r = x;
            while(parent[r] != r) 
                 r = parent[r];
            //路径压缩
            while(parent[x] != r){
                x = parent[x];
                parent[x] = r;
            }
            return r; 
        }
        
        // Return false if x, y are connected.
        public boolean union(int x, int y) {
            int rootX = find(x);
            int rootY = find(y);
            if (rootX == rootY) return false;
            
            // Make root of smaller rank point to root of larger rank.
            if (rank[rootX] < rank[rootY]) parent[rootX] = rootY;
            else if (rank[rootX] > rank[rootY]) parent[rootY] = rootX;
            else {
                parent[rootX] = rootY;
                rank[rootY]++;
            }
            
            return true;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值