深度强化学习cs294 Lecture6: Actor-Critic Algorithms

复习一下上节课的策略梯度算法。主要就是对目标函数的定义以及梯度的计算。还有一些减小方差的方法以及Importance Sampling的方法。
在这里插入图片描述

1. Improving the policy gradient with a critic

在公式里从当前开始得到的反馈值之和 Q ^ i , t π \widehat{Q}^{\pi}_{i,t} Q i,tπ有一个更好的估计方式:
在这里插入图片描述
这表示当前状态 s t s_{t} st采取了动作 a t a_{t} at之后后面会得到的所有反馈和的期望值。对应的有一个在当前状态 s t s_{t} st的期望值,就是对Q进行在 a t a_{t} at上求期望:
在这里插入图片描述
在policy gradient方法中使用一个常数b作为一个baseline来减小梯度的方差。这里的b就是对Q值的一个平均,那么就可以使用V来替代,而原本的 Q ^ i , t π \widehat{Q}^{\pi}_{i,t} Q i,tπ也可以用新的期望值 Q π ( s t , a t ) Q^{\pi}(s_{t},a_{t}) Qπ(st,at)替代。这样就得到了两个期望值的差值,我们把这个值叫做advantage函数。
在这里插入图片描述
使用了advantage函数的梯度求导,如果advantage函数估计得越准确,那么梯度的方差就会越小。而原来的使用一个序列的反馈值之和减去b的方式,方差更大。不过是一个无偏估计。

因此使用新的期望函数来计算梯度,但是需要计算三个不同的值 Q , V , A Q, V,A Q,V,A比较麻烦,可以看一下它们之间的关系。因为 Q π ( s t , a t )

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值