算法原理
这个算法是这样做的。根据边的重要性将边一条一条的删去,那么随着边的删除,那些节点也会慢慢变成独立的子连通图。如下图:
所以,怎么来确定边的重要性了?一种估量方式就是Edge betweenness,它被定义为节点对之间的最短路径经过该条边的节点对数。举个栗子,假设图1是原始网络,节点旁边是节点编号;图2中边旁边是每条边的Edge betweenness,如边(3,4)的Edge betweenness是12,即共有{{1,4},{1,5},{1,6},{1,7},{2,4},{2,5},{2,6},{2,7},{3,4},{3,5},{3,6},{3,7}}这12对节点对的最短路径经过边(3,4)。
那么就可以算每条边的Edge betweenness了,然后排序取最大值对应的那条边删除,即图2。接着继续计算Edge betweenness,再删… (图3,4)。完整的算法逻辑如下:
1.计算所有边的betweenness;
2.移去betweenness最高的那条边;
3.重新计算剩余边的betweenness;
4.重复步骤2和3,直到没有边可被移去。
去看原文
评价方法
按上面的方法确实可以划分不同的社区(团体),但是会出现很多中划分方式,那么哪一种才是最好的呢?如上图,画出了图3和图4两种划分的团体。因此需要一个评估方法来评价哪种划分方式更合理。
作者是这样做的:
修正:eii是每个社区的边数量(双向图),2m也为双向原始图的边的总数,从所有的划分方式中选择Q值最大的方式作为最终的社区划分结果。
实验结果
一种高效实现
原文有源码,更多内容,敬请关注地学分析与算法。