利用GN算法进行社区发现

算法原理

这个算法是这样做的。根据边的重要性将边一条一条的删去,那么随着边的删除,那些节点也会慢慢变成独立的子连通图。如下图:
在这里插入图片描述
所以,怎么来确定边的重要性了?一种估量方式就是Edge betweenness,它被定义为节点对之间的最短路径经过该条边的节点对数。举个栗子,假设图1是原始网络,节点旁边是节点编号;图2中边旁边是每条边的Edge betweenness,如边(3,4)的Edge betweenness是12,即共有{{1,4},{1,5},{1,6},{1,7},{2,4},{2,5},{2,6},{2,7},{3,4},{3,5},{3,6},{3,7}}这12对节点对的最短路径经过边(3,4)。

那么就可以算每条边的Edge betweenness了,然后排序取最大值对应的那条边删除,即图2。接着继续计算Edge betweenness,再删… (图3,4)。完整的算法逻辑如下:

1.计算所有边的betweenness;
2.移去betweenness最高的那条边;
3.重新计算剩余边的betweenness;
4.重复步骤2和3,直到没有边可被移去。

去看原文

评价方法

按上面的方法确实可以划分不同的社区(团体),但是会出现很多中划分方式,那么哪一种才是最好的呢?如上图,画出了图3和图4两种划分的团体。因此需要一个评估方法来评价哪种划分方式更合理。

作者是这样做的:
在这里插入图片描述
修正:eii是每个社区的边数量(双向图),2m也为双向原始图的边的总数,从所有的划分方式中选择Q值最大的方式作为最终的社区划分结果。

实验结果

在这里插入图片描述

一种高效实现

FN算法实现
FN算法的一种高效实现

原文有源码,更多内容,敬请关注地学分析与算法。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值