引言
时间序列数据中的跳跃点探测一直是时间序列分析和地学相关领域里面一个重要的研究内容,前期介绍了一种自动化的探测算法:BFAST(Breaks For Additive Season and Trend)算法,BFAST–长时间序列数据跳跃点探测及趋势分析。今天基于BFAST算法,采用NDVI年平均数据来分析一下植被覆盖变化的非线性趋势。
去看原文
原理
具体可参考这篇论文:
罗爽,刘会玉,龚海波.1982-2018年中国植被覆盖变化非线性趋势及其格局分析.生态学报,2022,42(20): 8331-8342.
根据BFast检测出的突变点个数以及趋势,将其划分为以下6种类型:
参考:
[1] A, Jan Verbesselt , et al. “Phenological change detection while accounting for abrupt and gradual trends in satellite image time series.” Remote Sensing of Environment 114. 12(2010):2970-2980.
[2] BAI J S,PERRON P.Computation and analysis of multiple structural change models[J].Journal of applied econometrics,2003