【基于BFAST逐像元分析植被覆盖变化的非线性趋势】

基于BFAST逐像元分析植被覆盖变化的非线性趋势

引言

时间序列数据中的跳跃点探测一直是时间序列分析和地学相关领域里面一个重要的研究内容,前期介绍了一种自动化的探测算法:BFAST(Breaks For Additive Season and Trend)算法,BFAST–长时间序列数据跳跃点探测及趋势分析。今天基于BFAST算法,采用NDVI年平均数据来分析一下植被覆盖变化的非线性趋势。
在这里插入图片描述
在这里插入图片描述
去看原文

原理

具体可参考这篇论文:

罗爽,刘会玉,龚海波.1982-2018年中国植被覆盖变化非线性趋势及其格局分析.生态学报,2022,42(20): 8331-8342.
根据BFast检测出的突变点个数以及趋势,将其划分为以下6种类型:
在这里插入图片描述

在这里插入图片描述
参考:

[1] A, Jan Verbesselt , et al. “Phenological change detection while accounting for abrupt and gradual trends in satellite image time series.” Remote Sensing of Environment 114. 12(2010):2970-2980.

[2] BAI J S,PERRON P.Computation and analysis of multiple structural change models[J].Journal of applied econometrics,2003

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值