本文我们介绍三个古早的激活函数,虽然古老,但是在神经网络中仍然有着广泛的应用,尤其是Softmax作为输出层,仍然是统治地位.
1. Sigmoid函数
Sigmoid函数的概念可以追溯到19世纪,但在现代科学和工程中,它的广泛应用主要是从20世纪中期开始的。
定义
Sigmoid函数的数学形式为:
σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1
关键性质
- 输出范围:Sigmoid函数的输出值在0到1之间,可以看作是一个概率值。
- 平滑性:Sigmoid函数是一个平滑的、连续的函数,具有良好的导数性质。
- 非线性:Sigmoid函数是一种非线性函数,可以引入非线性变换,增加神经网络的表达能力。
历史背景
-
早期数学背景:
- Sigmoid函数的数学形式(通常表示为 σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1)与累积分布函数(CDF)有相似之处。早在19世纪,数学家们就研究了类似的函数形式,特别是在概率和统计学中。
-
生物学和神经科学中的应用:
- 在20世纪中期,生物学家和神经科学家开始使用Sigmoid函数来描述神经元的激活函数。特别是,神经科学家Warren McCulloch和Walter Pitts在1943年提出的McCulloch-Pitts神经元模型中,使用了类似于Sigmoid函数的激活函数。
-
人工神经网络中的应用:
- 在20世纪80年代,随着人工神经网络的兴起,Sigmoid函数成为一种标准的激活函数。特别是在多层感知器(MLP)和反向传播算法(由David Rumelhart、Geoffrey Hinton和Ronald Williams在1986年提出)中,Sigmoid函数被广泛使用,因为它的导数形式简单,便于计算梯度。
2. Softmax函数
Softmax函数是一种广泛应用于机器学习和深度学习中的激活函数,特别是在多分类任务中。它将一个包含任意实数的向量转换为一个概率分布。Softmax函数的提出和应用与统计力学和信息理论中的概念有关。
2.1 定义
给定一个包含 n n n 个实数的向量 z = [ z 1 , z 2 , … , z n ] \mathbf{z} = [z_1, z_2, \ldots, z_n] z=[z1,z2,…,zn],Softmax函数将其转换为一个概率分布 p = [ p 1 , p 2 , … , p n ] \mathbf{p} = [p_1, p_2, \ldots, p_n] p=[p1,p2,…,pn],其中每个 $ p_i $ 的计算公式为:
p i = e z i ∑ j = 1 n e z j p_i = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}} pi=∑j=1nezjezi
2.2 关键性质
- 非负性:对于任意 i i i, p i ≥ 0 p_i \geq 0 pi≥0。
- 归一化:所有输出的和为1,即 ∑ i = 1 n p i = 1 \sum_{i=1}^n p_i = 1 ∑i=1npi=1。
- 指数函数的使用:指数函数 e z i e^{z_i} ezi 确保了输出值为正,并且放大了较大的 z i z_i zi 值的差异。
2.3 历史背景
Softmax函数的概念来源于统计力学中的Boltzmann分布(也称为Gibbs分布),它描述了系统在热平衡状态下不同能量状态的概率分布。这个概念在信息理论和机器学习中得到了广泛应用。
- 统计力学:在19世纪末和20世纪初,Ludwig Boltzmann和Josiah Willard Gibbs等科学家研究了热力学系统的能量分布,提出了Boltzmann分布。
- 信息理论:20世纪中期,Claude Shannon的工作奠定了信息理论的基础,其中包括熵和信息量的概念,这些概念与概率分布密切相关。
- 机器学习:在20世纪后期,特别是随着神经网络和深度学习的兴起,Softmax函数被引入到多分类问题中,用于输出层的激活函数,以将网络的输出转换为概率分布。
应用
多分类问题:Softmax函数常用于神经网络的输出层,在多分类问题中将网络的输出转换为类别的概率分布。
示例
假设有一个包含三个元素的向量 z = [ 2.0 , 1.0 , 0.1 ] \mathbf{z} = [2.0, 1.0, 0.1] z=[2.0,1.0,0.1],则Softmax函数的输出为:
import numpy as np
z = np.array([2.0, 1.0, 0.1])
softmax = np.exp(z) / np.sum(np.exp(z))
print(softmax)
输出:
[0.65900114 0.24243297 0.09856589]
这表示第一个元素的概率最大,约为0.659,第二个元素的概率约为0.242,第三个元素的概率最小,约为0.099.
3. Tanh函数
3.1 定义
Tanh函数(双曲正切函数)是一个常见的激活函数,广泛应用于神经网络和机器学习中。它的数学表达式为:
tanh ( x ) = e x − e − x e x + e − x \text{tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} tanh(x)=ex+e−xex−e−x
Tanh函数的导数可以表示为:
d d x tanh ( x ) = 1 − tanh 2 ( x ) \frac{d}{dx} \text{tanh}(x) = 1 - \text{tanh}^2(x) dxdtanh(x)=1−tanh2(x)
这意味着在输入值接近 − 1 -1 −1 或 1 1 1 时,导数值接近0,而在输入值接近0时,导数值接近1
3.2 关键性质
- 输出范围:Tanh函数的输出值在 − 1 -1 −1 到 1 1 1 之间。
- 中心对称性:Tanh函数是关于原点对称的,即 tanh ( − x ) = − tanh ( x ) \text{tanh}(-x) = -\text{tanh}(x) tanh(−x)=−tanh(x)。
- 平滑性:Tanh函数是一个平滑的、连续的函数,具有良好的导数性质。
3.3 历史背景
Tanh函数与双曲函数的研究可以追溯到18世纪。它在数学和工程学中有广泛的应用,特别是在信号处理和控制系统中。随着神经网络的发展,Tanh函数被引入作为一种激活函数。
3.4 应用
在神经网络中,Tanh函数常用于隐藏层的激活函数。它的输出范围在 − 1 -1 −1 到 1 1 1 之间,这使得它在某些情况下比Sigmoid函数更有优势,因为它的输出是零中心的,有助于加速梯度下降的收敛。
总结
今天我们介绍了三个古老的激活函数,它们在神经网络中仍然有着广泛的应用。Sigmoid函数作为一种非线性函数,可以引入非线性变换,增加神经网络的表达能力;Softmax函数常用于多分类问题,将网络的输出转换为类别的概率分布;Tanh函数作为隐藏层的激活函数,输出范围在 − 1 -1 −1 到 1 1 1 之间,有助于加速梯度下降的收敛。
下一次我们进入到更加现代的激活函数,如ReLU、Swish等,敬请期待!
参考
[1] Sigmoid Activation Function
[2] A pseudo-softmax function for hardware-based high speed image classification
欢迎关注我的GitHub和微信公众号[真-忒修斯之船],来不及解释了,快上船!
仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!