Sigmoid函数与损失函数求导

1. sigmoid函数

sigmoid函数,也就是s型曲线函数,如下:

函数: f ( z ) = 1 1 + e − z f(z)=\frac{1}{1+e^{-z}} f(z)=1+ez1

导数: f ′ ( z ) = f ( z ) ( 1 − f ( z ) ) f'(z)=f(z)(1-f(z)) f(z)=f(z)(1f(z))

上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下。

1.1 从指数函数到sigmoid

首先我们来画出指数函数的基本图形:

对数函数
从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像:

sigmoid函数

如果直接把 e − x e^{-x} ex放到分母上,就与 e x e^x ex图像一样了,所以分母加上1,就得到了上面的图像,定义域是(−∞,+∞),值域是(0,1),那么就有一个很好地特性了,就是不管 x x x是什么,都可以得到(0,1)之间的值;

1.2 对数函数与sigmoid

首先来看一下对数函数的图像:

对数函数

对数函数的图像如上,单调递减,有一个比较好的特性就是在(0,1)之间,在接近0的时候,就近无穷大,接近1的时候为0,如果我们把前面的sigmoid函数放到自变量的位置上,就得到了(0,1)的图像;

我们如何来衡量一个结果与实际计算值得差距呢?一种思路就是,如果结果越接近,差值就越小,反之越大,这个函数就提供了这样一种思路,如果计算得到的值越接近1,那么那么表示与世界结果越接近,反之越远,所以利用这个函数,可以作为逻辑回归分类器的损失函数,如果所有的结果都能接近结果值,那么就越接近于0,如果所有的样本计算完成以后,结果接近于0,就表示计算结果与实际结果非常相近。

2. sigmoid函数求导

sigmoid导数具体的推导过程如下:

f ′ ( z ) = ( 1 1 + e − z ) ′ = e − z ( 1 + e − z ) 2 = 1 + e − z − 1 ( 1 + e − z ) 2 = 1 ( 1 + e − z ) ( 1 − 1 ( 1 + e − z ) ) = f ( z ) ( 1 − f ( z ) ) \begin{aligned} f'(z) &= (\frac{1}{1+e^{-z}})' \\ &= \frac{e^{-z}}{(1+e^{-z})^{2}} \\ &= \frac{1+e^{-z}-1}{(1+e^{-z})^{2}} \\ &= \frac{1}{(1+e^{-z})}(1-\frac{1}{(1+e^{-z})}) \\ &= f(z)(1-f(z)) \\ \end{aligned} f(z)=(1+ez1)=(1+ez)2ez=(1+ez)21+ez1=(1+ez)1(1(1+ez)1)=f(z)(1f(z))

3 .神经网络损失函数求导

神经网络的损失函数可以理解为是一个多级的复合函数,求导使用链式法则。

J ( Θ ) = − 1 m ∑ i = 1 m ∑ k = 1 K [ y k ( i ) log ⁡ ( ( h Θ ( x ( i ) ) ) k ) + ( 1 − y k ( i ) ) log ⁡ ( 1 − ( h Θ ( x ( i ) ) ) k ) ] + λ 2 m ∑ l = 1 L − 1 ∑ i = 1 s l ∑ j = 1 s l + 1 ( Θ j , i ( l ) ) 2 \begin{gathered} J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \left[y^{(i)}_k \log ((h_\Theta (x^{(i)}))_k) + (1 - y^{(i)}_k)\log (1 - (h_\Theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2 \end{gathered} J(Θ)=m1i=1mk=1K[yk(i)log((hΘ(x(i)))k)+(1yk(i))log(1(hΘ(x(i)))k)]+2mλl=1L1i=1slj=1sl+1(Θj,i(l))2

先来说一下常规求导的过程:

e = ( a + b ) ( b + 1 ) e = (a+b)(b+1) e=(a+b)(b+1)

原始

这是一个简单的复合函数,如上图所示,c是a的函数,e是c的函数,如果我们用链式求导法则,分别对a和b求导,那么就是求出e对c的导数,c对a的导数,乘起来,对b求导则是求出e分别对c和d的导数,分别求c和d对b的导数,然后加起来,这种方法使我们常规的做法,有一个问题就是,我们在求到的过程中,e对c求导计算了2次,如果方程特别复杂,那么这个计算量就变得很大,怎样能够让每次求导只计算一次呢?

反向传播

如上图所示,我们从上往下开始计算,将每个单元的值计算出来,然后计算每个单元的偏导数,保存下来;

接下来继续计算子单元的值,子单元的偏导数,保存下来;将最后的子单元到根节点所在的路径的所有偏导乘起来,就是该函数对这个变量的偏导,计算的本质就是从上往下,计算的时候将值存起来,乘到后面的单元上去,这样每个路径的偏导计算只需要一次,从上到下计算一遍就得到了所有的偏导数。

实际上BP(Backpropagation,反向传播算法),就是如此计算的,如果现在有一个三层的神经网络,有输入、一个隐藏层,输出层,我们对损失函数求权重的偏导数,它是一个复杂的复合函数,如果先对第一层的权重求偏导,然后在对第二层的权重求偏导,会发现,其中有很多重复计算的步骤,就像上面的简单函数的示例,所以,为了避免这种消耗,我们采用的就是从后往前求偏导,求出每个单元的函数值,求出对应单元的偏导数,保存下来,一直乘下去,输入层。

下面用一个简单的示例来演示一下反向传播求偏导的过程:

Neural

那么我们会有两个初始的权重矩阵:

θ 1 = [ θ 10 1 θ 11 1 θ 12 1 θ 20 1 θ 21 1 θ 22 1 ] θ 2 = [ θ 10 2 θ 11 2 θ 12 2 ] \begin{aligned} \theta^{1} = \begin{bmatrix} \theta^1_{10} &\theta^1_{11}& \theta^1_{12} \\ \theta^1_{20} &\theta^1_{21}& \theta^1_{22} \end{bmatrix} \\ \\ \theta^{2} = \begin{bmatrix} \theta^2_{10} &\theta^2_{11}& \theta^2_{12} \end{bmatrix} \end{aligned} θ1=[θ101θ201θ111θ211θ121θ221]θ2=[θ102θ112θ122]

我们得到了上面的矩阵,现在我们以sigmoid函数作为激活函数,分别来计算每一层网络的激励(假设我们只有一个样本,输入是 x 1 , x 2 x1,x2 x1,x2, 输出是 y y y);

第一层是输入,激励就是样本的特征值;记为:
a 1 = [ x 0 x 1 x 2 ] \begin{aligned} a^1 = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \end{aligned} a1=x0x1x2

x 0 x_0 x0 是偏置项,为1.
第二层是隐藏层,激励通过特征值与区中相乘得到,然后取sigmoid函数变换,得到 a 2 a^2 a2,未变换之前的记为 z 2 z^2 z2

z 1 2 = θ 10 1 ∗ x 0 + θ 11 1 ∗ x 1 + θ 12 1 ∗ x 2 z 2 2 = θ 20 1 ∗ x 0 + θ 21 1 ∗ x 1 + θ 22 1 ∗ x 2 z 2 = [ z 1 2 z 2 2 ] a 2 = s i g m o i d ( z 2 ) a 2 = [ 1 a 1 2 a 2 2 ] \begin{aligned} z^2_1 &= \theta^1_{10} *x_0 + \theta^1_{11}*x_1+\theta^1_{12} * x_2 \\ z^2_2 &= \theta^1_{20} *x_0 + \theta^1_{21}*x_1+\theta^1_{22} * x_2 \\ z^2 &= \begin{bmatrix} z^2_1 \\ z^2_2 \end{bmatrix} \\ a^2 &= sigmoid(z^2) \\ a^2 &= \begin{bmatrix} 1\\ a^2_1\\ a^2_2 \end{bmatrix} \\ \end{aligned} z12z22z2a2a2=θ101x0+θ111x1+θ121x2=θ201x0+θ211x1+θ221x2=[z12z22]=sigmoid(z2)=1a12a22

在上面,我们最后加上了偏置项;

接下来第三层是输出层:

z 1 3 = θ 10 2 ∗ a 0 2 + θ 11 2 ∗ a 1 2 + θ 12 2 ∗ a 2 2 z 3 = [ z 1 3 ] a 3 = s i g m o i d ( z 3 ) a 3 = [ a 1 3 ] \begin{aligned} z^3_1 &= \theta^2_{10} *a^2_{0} + \theta^2_{11}*a^2_{1}+\theta^2_{12} * a^2_{2} \\ z^3 &= \begin{bmatrix} z^3_1 \end{bmatrix} \\ a^3 &= sigmoid(z^3) \\ a^3 &= \begin{bmatrix} a^3_1 \end{bmatrix} \\ \end{aligned} z13z3a3a3=θ102a02+θ112a12+θ122a22=[z13]=sigmoid(z3)=[a13]

因为是输出层了,所以不需要再往下计算,所以不加偏置项;

上面的计算流程,从输入到输出,我们也称为前向传播(Forward propagation)。

然后,我们根据损失函数,写出损失函数的公式,在这里,只有一个输入,一个输出,所以损失函数写出来较为简单:

在这里, m m m=1;

J ( Θ ) = − 1 m [ y k ( i ) log ⁡ ( ( h Θ ( x ( i ) ) ) k ) + ( 1 − y k ( i ) ) log ⁡ ( 1 − ( h Θ ( x ( i ) ) ) k ) ] + λ 2 m ∑ l = 1 L − 1 ∑ i = 1 s l ∑ j = 1 s l + 1 ( Θ j , i ( l ) ) 2 = − 1 m [ y ∗ l o g ( a 3 ) + ( 1 − y ) ∗ l o g ( 1 − a 3 ) ] + λ 2 m ∑ l = 1 L − 1 ∑ i = 1 s l ∑ j = 1 s l + 1 ( Θ j , i ( l ) ) 2 \begin{aligned} J(\Theta) &= - \frac{1}{m} \left[y^{(i)}_k \log ((h_\Theta (x^{(i)}))_k) + (1 - y^{(i)}_k)\log (1 - (h_\Theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2 \\ & = - \frac{1}{m}\left[ y * log(a^3) + (1-y)* log(1-a^3) \right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2 \end{aligned} J(Θ)=m1[yk(i)log((hΘ(x(i)))k)+(1yk(i))log(1(hΘ(x(i)))k)]+2mλl=1L1i=1slj=1sl+1(Θj,i(l))2=m1[ylog(a3)+(1y)log(1a3)]+2mλl=1L1i=1slj=1sl+1(Θj,i(l))2

说明: λ 2 m ∑ l = 1 L − 1 ∑ i = 1 s l ∑ j = 1 s l + 1 ( Θ j , i ( l ) ) 2 \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2 2mλl=1L1i=1slj=1sl+1(Θj,i(l))2实际上就是所有的权重的平方和,一般不会将和偏置项相乘的那个放进来;这个项很简单,暂时先不管它,后面不暂时不写这一项(这个是正则化)。

J ( Θ ) = − 1 m [ y ∗ l o g ( a 3 ) + ( 1 − y ) ∗ l o g ( 1 − a 3 ) ] J(\Theta) = - \frac{1}{m}\left[ y * log(a^3) + (1-y)* log(1-a^3)\right] J(Θ)=m1[ylog(a3)+(1y)log(1a3)]

然后我们得到了上面的式子,这里我们知道,如果我们想要求θ212θ122的偏导数的话,会发现,这个式子其实是一个复合函数, y y y是常数, a 3 a^3 a3 z 3 z^3 z3sigmoid函数变换,而 z 3 z^3 z3则是 a 2 a^2 a2与权重相乘得来的,现在我们找到了权重在哪里,就可以开始求偏导了,在这里, a 3 a^3 a3写成 s ( z 3 ) s(z^3) s(z3),然后,我们就得到了下面的推导:

∂ J ( Θ ) ∂ θ 12 2 = − 1 m [ y ∗ 1 s ( z 3 ) − ( 1 − y ) ∗ 1 1 − s ( z 3 ) ] ∗ s ( z 3 ) ∗ ( 1 − s ( z 3 ) ) ∗ a 12 2 = − 1 m [ y ∗ ( 1 − s ( z 3 ) − ( 1 − y ) ∗ s ( z 3 ) ] ∗ a 12 2 = − 1 m [ y − s ( z 3 ) ] ∗ a 12 2 = 1 m [ s ( z 3 ) − y ] ∗ a 12 2 = 1 m [ a 3 − y ] ∗ a 12 2 \begin{aligned} \frac{\partial J(\Theta)}{\partial \theta^2_{12}} & = - \frac{1}{m}\left[ y* \frac{1}{s(z^3)} - (1-y) * \frac{1}{1-s(z^3)} \right] * s(z^3)*(1-s(z^3)) * a^2_{12} \\ &= - \frac{1}{m}\left[ y* (1-s(z^3) - (1-y) * s(z^3) \right] * a^2_{12} \\ &= - \frac{1}{m}\left[ y -s(z^3) \right] * a^2_{12} \\ &= \frac{1}{m}\left[ s(z^3) -y \right] * a^2_{12} \\ &= \frac{1}{m}\left[ a^3 -y \right] * a^2_{12} \end{aligned} θ122J(Θ)=m1[ys(z3)1(1y)1s(z3)1]s(z3)(1s(z3))a122=m1[y(1s(z3)(1y)s(z3)]a122=m1[ys(z3)]a122=m1[s(z3)y]a122=m1[a3y]a122

根据上面的推导,可以得到下面的式子:

∂ J ( Θ ) ∂ θ 10 2 = 1 m [ a 3 − y ] ∗ a 10 2 ∂ J ( Θ ) ∂ θ 11 2 = 1 m [ a 3 − y ] ∗ a 11 2 \begin{aligned} \frac{\partial J(\Theta)}{\partial \theta^2_{10}} &= \frac{1}{m}\left[ a^3 -y \right] * a^2_{10} \\ \frac{\partial J(\Theta)}{\partial \theta^2_{11}} &= \frac{1}{m}\left[ a^3 -y \right] * a^2_{11} \end{aligned} θ102J(Θ)θ112J(Θ)=m1[a3y]a102=m1[a3y]a112

所以,还记得前面所说的,我盟从上往下求导,保存当前对多个子单元的偏导数,根据上面的式子,我们知道,对于第二个权重矩阵的偏导,可以由 [ a 3 − y ] [a^3−y] [a3y]乘以前一层网络的激励,然后除以样本个数来得到,因此有时候我们会将这个差值称为 δ 3 \delta^3 δ3,保存下来,使用矩阵的形式相乘,得到第二个权重矩阵的偏导数;

现在我们已经得到了第二个权重矩阵的偏导数,如何求第一个权重矩阵中的偏导数呢?

比如说,我们现在要对 θ 12 1 θ^1_{12} θ121求偏导:

∂ J ( Θ ) ∂ θ 12 1 = − 1 m [ y ∗ 1 s ( z 3 ) − ( 1 − y ) ∗ 1 1 − s ( z 3 ) ] ∗ s ( z 3 ) ∗ ( 1 − s ( z 3 ) ) ∗ θ 11 2 ∗ s ( z 2 ) ∗ ( 1 − s ( z 2 ) ) ∗ x 2 = − 1 m ∗ [ a 3 − y ] ∗ θ 11 2 ∗ s ( z 2 ) ∗ ( 1 − s ( z 2 ) ) ∗ x 2 = − 1 m ∗ δ 3 ∗ θ 11 2 ∗ s ( z 2 ) ∗ ( 1 − s ( z 2 ) ) ∗ x 2 \begin{aligned} \frac{\partial J(\Theta)}{\partial \theta^1_{12}} & = - \frac{1}{m}\left[ y* \frac{1}{s(z^3)} - (1-y) * \frac{1}{1-s(z^3)} \right] * s(z^3)*(1-s(z^3)) * \theta^2_{11}*s(z^2)*(1-s(z^2))*x_2 \\ & = -\frac{1}{m}*\left[ a^3 -y \right] * \theta^2_{11}*s(z^2)*(1-s(z^2))*x_2 \\ &= -\frac{1}{m} * \delta^3 * \theta^2_{11}*s(z^2)*(1-s(z^2))*x_2 \end{aligned} θ121J(Θ)=m1[ys(z3)1(1y)1s(z3)1]s(z3)(1s(z3))θ112s(z2)(1s(z2))x2=m1[a3y]θ112s(z2)(1s(z2))x2=m1δ3θ112s(z2)(1s(z2))x2

从上线的式子,我们就可以看出来,我们保存的导数可以直接乘,如果而不用再次计算一遍,如果有多层网络,实际上后面的过程与这个是一样的,所以就得到了这样的式子:

δ 3 = a 3 − y δ 2 = δ 3 ∗ ( θ 2 ) T ∗ s ( z 2 ) ′ \begin{aligned} \delta^3 &= a^3 - y \\ \delta^2 &= \delta^3 * (\theta^2)^T * s(z^2)' \end{aligned} δ3δ2=a3y=δ3(θ2)Ts(z2)

因为这个网络就是3层,所以这样就可以得出全部的偏导数,如果是多层,原理是一样的,不断地乘下去,从第二个式子开始,后面的形式都是一样的。

本文转自:夜行625 的深度学习blog, 供自己学习neural network, 原文链接: https://blog.csdn.net/zhishengqianjun/article/details/75303820

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值