题目描述:
攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。
1. 地图表示为一维数组,数组的索引代表水平位置,数组的高度代表相对海拔高度。其中数组元素 0 代表地面。例如[0,1,4,3,1,0,0,1,2,3,1,2,1,0], 代表如下图所示的地图,地图中有两个山脉位置分别为1,2,3,4,5 和 8,9,10,11,12,13,最高峰高度分别为 4,3。最高峰位置分别为 3,10。一个山脉可能有多座山峰(高度大于两边,或者在地图边界)。
2. 登山时会消耗登山者的体力 ( 整数 ) ,上山时,消耗相邻高度差两倍的体力,下坡时消耗相邻高度差一倍的体力,平地不消耗体力,登山者体力消耗到零时会有生命危险。例如,上图所示的山峰,从索引 0 ,走到索引 1 ,高度差为 1 ,需要消耗 2X1 = 2 的体力,从索引 2 高度 2 走到高度 4 索引 3 需要消耗 2X2 = 4 的体力。如果是从索引3 走到索引 4 则消耗 1X1 的体力。
3. 登山者体力上限为 999 。
4. 登山时的起点和终点可以是地图中任何高度为 0 的地面例如上图中的 0,6,7,14 都可以作为登山的起点和终点
攀登者想要评估一张地图内有多少座山峰可以进行攀登,且可以安全返回到地面,且无生命危险。
例如上图中的数组,有 3 个不同的山峰,登上位置在 3 的山可以从位置 0 或者位置 6 开始,从位置 0 登到山顶需要消耗体力 1X2+1X2+2X2 = 8, 从山顶返回到地面 0 需要消耗体力 2X1 + 1X1 + 1X1 = 4 的体力,按照登山路线 0->3->0 需要消耗体力 12。攀登者至少需要 12 以上的体力(大于 12)才能安全返回。
示例1:
输入
[0,1,4,3,1,0,0,1,2,3,1,2,1,0],13
输出
3
说明:登山者只能够登上位置 10 和 12 的山峰,7->10->7, 14->12>14
示例 2:
输入
[1,4,3],999
输出
0
说明:没有合适的起点和终点
C++源码:
#include <iostream>
#include <vector>
#include <string>
#include <limits>
#include <algorithm>
#include <sstream>
using namespace std;
vector<bool> findPeaks(const vector<int>& heights) {
int n = heights.size();
vector<bool> peaks(n, false); // 初始化所有元素为 False 的布尔向量。
for (int i = 0; i < n; ++i) {
if ((i == 0 || heights[i] > heights[i - 1]) &&
(i == n - 1 || heights[i] > heights[i + 1])) {
peaks[i] = true; // 如果是山峰,则设置相应位置为 True。
}
}
return peaks;
}
int climPeaks(const vector<int>& heights, int maxPower) {
int n = heights.size();
vector<bool> peaks = findPeaks(heights);
vector<double> up(n, numeric_limits<double>::infinity());
vector<double> down(n, numeric_limits<double>::infinity());
double tempUp = 0;
double tempDown = 0;
int up_from = -1;
for (int i = 0; i < n; ++i) {
if (heights[i] == 0) {
tempUp = 0;
tempDown = 0;
up_from = i;
continue;
}
if (up_from == -1) continue;
int diff = heights[i] - heights[i - 1];
if (heights[i] > heights[i - 1]) {
tempUp += 2 * abs(diff);
tempDown += abs(diff);
}
else {
tempUp += abs(diff);
tempDown += 2 * abs(diff);
}
up[i] = tempUp;
down[i] = tempDown;
}
tempUp = 0;
tempDown = 0;
up_from = n;
for (int i = n - 1; i >= 0; --i) {
if (heights[i] == 0) {
up_from = i;
tempDown = 0;
tempDown = 0;
continue;
}
if (up_from == n) continue;
int diff = heights[i] - heights[i + 1];
if (heights[i] > heights[i + 1]) {
tempUp += 2 * abs(diff);
tempDown += abs(diff);
}
else {
tempUp += abs(diff);
tempDown += 2 * abs(diff);
}
up[i] = min(up[i], tempUp);
down[i] = min(down[i], tempDown);
}
int cnt = 0;
for (int i = 0; i < n; ++i) {
if (peaks[i] && (up[i] + down[i] < maxPower)) {
cnt += 1;
}
}
return cnt;
}
int main() {
string input;
getline(cin, input); // 读取整行输入
stringstream ss(input); // 创建字符串流对象来解析输入
vector<int> heights;
int lenInput = input.size();
for (int i = 0; i < lenInput; i++) {
if (input[i] <= 57 && input[i] >= 48) {
int tempInput = input[i] - '0'; // 将字符转化为数字
heights.push_back(tempInput);
}
}
int maxPower;
cin >> maxPower;
int result = climPeaks(heights, maxPower);
cout << result << endl;
system("pause");
return 0;
}