华为机考真题 -- 攀登者2

题目描述:

攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。
1. 地图表示为一维数组,数组的索引代表水平位置,数组的高度代表相对海拔高度。其中数组元素 0 代表地面。例如[0,1,4,3,1,0,0,1,2,3,1,2,1,0], 代表如下图所示的地图,地图中有两个山脉位置分别为1,2,3,4,5 和 8,9,10,11,12,13,最高峰高度分别为 4,3。最高峰位置分别为 3,10。一个山脉可能有多座山峰(高度大于两边,或者在地图边界)。

2. 登山时会消耗登山者的体力 ( 整数 ) ,上山时,消耗相邻高度差两倍的体力,下坡时消耗相邻高度差一倍的体力,平地不消耗体力,登山者体力消耗到零时会有生命危险。例如,上图所示的山峰,从索引 0 ,走到索引 1 ,高度差为 1 ,需要消耗 2X1 = 2 的体力,从索引 2 高度 2 走到高度 4 索引 3 需要消耗 2X2 = 4 的体力。如果是从索引3 走到索引 4 则消耗 1X1 的体力。

3. 登山者体力上限为 999 。

4. 登山时的起点和终点可以是地图中任何高度为 0 的地面例如上图中的 0,6,7,14 都可以作为登山的起点和终点

攀登者想要评估一张地图内有多少座山峰可以进行攀登,且可以安全返回到地面,且无生命危险。

例如上图中的数组,有 3 个不同的山峰,登上位置在 3 的山可以从位置 0 或者位置 6 开始,从位置 0 登到山顶需要消耗体力 1X2+1X2+2X2 = 8, 从山顶返回到地面 0 需要消耗体力 2X1 + 1X1 + 1X1 = 4 的体力,按照登山路线 0->3->0 需要消耗体力 12。攀登者至少需要 12 以上的体力(大于 12)才能安全返回。


示例1:

输入
[0,1,4,3,1,0,0,1,2,3,1,2,1,0],13
输出
3
说明:登山者只能够登上位置 10 和 12 的山峰,7->10->7, 14->12>14

示例 2:

输入
[1,4,3],999

输出
0
说明:没有合适的起点和终点

C++源码:

#include <iostream>
#include <vector>
#include <string>
#include <limits>
#include <algorithm>
#include <sstream>

using namespace std;

vector<bool> findPeaks(const vector<int>& heights) {
    int n = heights.size();
    vector<bool> peaks(n, false);  // 初始化所有元素为 False 的布尔向量。
    for (int i = 0; i < n; ++i) {
        if ((i == 0 || heights[i] > heights[i - 1]) &&
            (i == n - 1 || heights[i] > heights[i + 1])) {
            peaks[i] = true;  // 如果是山峰,则设置相应位置为 True。
        }
    }
    return peaks;
}

int climPeaks(const vector<int>& heights, int maxPower) {
    int n = heights.size();
    vector<bool> peaks = findPeaks(heights);
    vector<double> up(n, numeric_limits<double>::infinity());
    vector<double> down(n, numeric_limits<double>::infinity());

    double tempUp = 0;
    double tempDown = 0;
    int up_from = -1;
    for (int i = 0; i < n; ++i) {
        if (heights[i] == 0) {
            tempUp = 0;
            tempDown = 0;
            up_from = i;
            continue;
        }
        if (up_from == -1) continue;

        int diff = heights[i] - heights[i - 1];
        if (heights[i] > heights[i - 1]) {
            tempUp += 2 * abs(diff);
            tempDown += abs(diff);
        }
        else {
            tempUp += abs(diff);
            tempDown += 2 * abs(diff);
        }

        up[i] = tempUp;
        down[i] = tempDown;
    }

    tempUp = 0;
    tempDown = 0;
    up_from = n;
    for (int i = n - 1; i >= 0; --i) {
        if (heights[i] == 0) {
            up_from = i;
            tempDown = 0;
            tempDown = 0;
            continue;
        }
        if (up_from == n) continue;

        int diff = heights[i] - heights[i + 1];
        if (heights[i] > heights[i + 1]) {
            tempUp += 2 * abs(diff);
            tempDown += abs(diff);
        }
        else {
            tempUp += abs(diff);
            tempDown += 2 * abs(diff);
        }

        up[i] = min(up[i], tempUp);
        down[i] = min(down[i], tempDown);
    }

    int cnt = 0;
    for (int i = 0; i < n; ++i) {
        if (peaks[i] && (up[i] + down[i] < maxPower)) {
            cnt += 1;
        }
    }
    return cnt;
}

int main() {
    string input;
    getline(cin, input); // 读取整行输入

    stringstream ss(input); // 创建字符串流对象来解析输入
    vector<int> heights;
    int lenInput = input.size();
    for (int i = 0; i < lenInput; i++) {

        if (input[i] <= 57 && input[i] >= 48) {
            int tempInput = input[i] - '0'; // 将字符转化为数字
            heights.push_back(tempInput);
        }
    }

    int maxPower;
    cin >> maxPower;
    int result = climPeaks(heights, maxPower);
    cout << result << endl;

    system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值